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Build memory-efficient data structures before shipping to help:
» Solve “easy” problems in rapid succession

» Any state can be the goal
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» Straight-line heuristics are easy to compute online

» Improve them by (re-)arranging the search graph offline
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(Example 1) Rearranging a grid world
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EUCLIDEAN HEURISTICS

Definition (Euclidean heuristics)

A Euclidean heuristic Y is one whose heuristic values can be
computed as distances in a Euclidean space of d dimensions

h(i,j) = llyi = yjll
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ADMISSIBILITY /CONSISTENCY

SIMPLIFIED CONSTRAINTS

A Euclidean heuristic Y is admissible and consistent if:

V(7)) llyi =yl <6(,))
Vi, i, k) llyi —yll <00, k) + lly; — vkl
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ADMISSIBILITY /CONSISTENCY

SIMPLIFIED CONSTRAINTS

A Euclidean heuristic Y is admissible and consistent if:

V(i) Iy = yill <0G, j)
V(i j k) Mlyi = yill <0G k) + lly; — yel

Theorem
Y is locally admissible

v(i,j) € E IIyiﬁ— yill < 6(1,7)

Y is admissible and consistent
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ADMISSIBILITY /CONSISTENCY

SIMPLIFIED CONSTRAINTS

A Euclidean heuristic Y is admissible and consistent if:

V(i) Iy = yill <0G, j)
V(i j k) Mlyi = yill <0G k) + lly; — yel

Theorem
Y is locally admissible

v(i,j) € E IIyiﬁ— yill < 6(1,7)

Y is admissible and consistent

(one constraint per edge)




Introduction Problem Solution Connections Experiments End

Definition (Optimal Euclidean Heuristic)

Minimizes the loss between true distances ¢ and heuristics h:
miniymize L(Y)

subject to Y is admissible and consistent
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DEFINING LOSS
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DEFINING LOSS

SIMPLIFYING THE OBJECTIVE
L) =Y WyldGi,j)* = llyi — vl
i,j
Admissibility — §(i,7)* > [ly; — yjl|*

LY) =Y Wi(6(i.j)* = llyi — yill*)
ij
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DEFINING LOSS

SIMPLIFYING THE OBJECTIVE
Y) = Z Wil (i, ) = llyi — vl
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SIMPLIFYING THE OBJECTIVE
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NONLINEAR DIMENSIONALITY REDUCTION

The full optimization problem:
- 2
max1ym1ze Z Wiillyi — y;ll
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CONNECTIONS

NONLINEAR DIMENSIONALITY REDUCTION

The full optimization problem:

. . . L . 2
max1ym1ze ; Wiillyi — y;ll
subjectto V(i,j) € E ly; — l < di.j)

This is a weighted generalization of Weinberger et al.’s
Maximum Variance Unfolding (MVU)

Heuristic learning is linked to manifold learning
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MANIFOLD LEARNING

100 100 100
» What “dimensionality”
. 50% 50% 50%
will hold a search graph?
0% 0% 0%

» Visualization may shed g
new light on problems
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DIFFERENTIAL HEURISTICS

NG & ZHANG 02, GOLDBERG & HARRELSON '05, STURTEVANT ef al.”09

Imagine “hooking” the graph on a pivot state
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1 -1/3 -1/3 0
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Let “pivot” be state 1 and n = 4:  Can this be improved?
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CONNECTIONS

DIFFERENTIAL HEURISTICS

Our approach recovers differential heuristics when W = Wy

Let “pivot” be state 1 and n = 4:  Can this be improved?

0 1 1 1 0111
R 0 -1/3 -1/3 1 0 € €
Wd1ff = 1 ~1/3 0 -1/3 W;_iff = 1 € 0 €
1 —1/3 —1/3 0 1 € € 0

» Push points away from the Let’s experiment with ¢ = 1073...
pivot state (weight 1)

» and pull points into each
other (weight 1/(n-1))
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PATHPLANNING EXPERIMENT

..

» Maps with 168-6,240 states: standard problem sets
» Count the nodes A* [Hart et al. 68] expands to find a path
» Compare Wi and W
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PATHPLANNING RESULTS
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CUBE WORLD EXPERIMENT

Differential heuristics” weakness: high dimensionality

» Octile grid world, generalized to higher dimensions
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CUBE WORLD EXPERIMENT

Differential heuristics” weakness: high dimensionality

» Octile grid world, generalized to higher dimensions
» Agent can increment any/all coordinates by 1 each turn

» Transition costs are edge lengths
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CUBE WORLD RESULTS (20 x 20 x 20)
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WORD GRAPH EXPERIMENT
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» 4,820 states representing four-letter words
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WORD GRAPH EXPERIMENT
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» 4,820 states representing four-letter words

» Find shortest sequence of 1-letter changes
turning start word into goal word

fore — fork — ? — back
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Problem Solution Connections Experiments
WORD GRAPH RESULTS
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SUMMARY

A novel way to build admissible/consistent heuristics

» principled link to manifold learning
» generalization of differential heuristics

» promising empirical results on small problems

(Thank you: Ariel Felner, our anonymous reviewers,
NSERC and iCore)
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