Introduction	Problem	Solution	Connections	Experiments	End

Euclidean Heuristic Optimization

Chris Rayner Michael Bowling Nathan Sturtevant

(University of Alberta) (University of Alberta) (University of Denver)

AAAI 2011

August 9, 2011

Build memory-efficient data structures *before shipping* to help:

- ► Solve "easy" problems in rapid succession
- Any state can be the goal

Dragon Age: Origins (BioWare)

► Straight-line heuristics are easy to compute *online*

Dragon Age: Origins (BioWare)

- ► Straight-line heuristics are easy to compute *online*
- ► Improve them by (re-)arranging the search graph offline

Introduction	Problem	Solution	Connections	Experiments	End

(Example 1) Rearranging a grid world

Introduction	Problem	Solution	Connections	Experiments	End

(Example 2) Arranging a 2 \times 3 sliding tile puzzle:

	1	2
3	4	5

Introduction	Problem	Solution	Connections	Experiments	End

EUCLIDEAN HEURISTICS

Definition (Euclidean heuristics)

A Euclidean heuristic *Y* is one whose heuristic values can be computed as distances in a Euclidean space of *d* dimensions

$$h(i,j) = \|y_i - y_j\|$$

Introduction	Problem	Solution	Connections	Experiments	End

EUCLIDEAN HEURISTICS

Definition (Euclidean heuristics)

A Euclidean heuristic *Y* is one whose heuristic values can be computed as distances in a Euclidean space of *d* dimensions

$$h(\mathbf{i}, \mathbf{j}) = \|\mathbf{y}_{\mathbf{i}} - \mathbf{y}_{\mathbf{j}}\|$$

Introduction	Problem	Solution	Connections	Experiments	End

EUCLIDEAN HEURISTICS

Definition (Euclidean heuristics)

A Euclidean heuristic *Y* is one whose heuristic values can be computed as distances in a Euclidean space of *d* dimensions

 $h(i,j) = \|y_i - y_j\|$

Introduction	Problem	Solution	Connections	Experiments	End
Problem	M STATEM	1ENT			

Look among all Euclidean heuristics Y for one that is best

Introduction	Problem	Solution	Connections	Experiments	End
Problem	M STATEN	IENT			

Look among *all* Euclidean heuristics Y for one that is best

Definition (Optimal Euclidean Heuristic) Minimizes the loss between true distances δ and heuristics *h*:

 $\begin{array}{ll} \underset{Y}{\text{minimize}} & \mathcal{L}(Y) \\ \text{subject to} & Y \text{ is admissible and consistent} \end{array}$

Introduction	Problem	Solution	Connections	Experiments	End
Problem	M STATEN	IENT			

Look among *all* Euclidean heuristics Y for one that is best

Definition (Optimal Euclidean Heuristic) Minimizes the loss between true distances δ and heuristics *h*:

 $\begin{array}{ll} \underset{Y}{\text{minimize}} & \mathcal{L}(Y) \\ \text{subject to} & Y \text{ is admissible and consistent} \end{array}$

Introduction	Problem	Solution	Connections	Experiments	End
•					

ADMISSIBILITY/CONSISTENCY

SIMPLIFIED CONSTRAINTS

A Euclidean heuristic *Y* is admissible and consistent if:

$$\begin{aligned} \forall (i,j) & \|y_i - y_j\| \leq \delta(i,j) \\ \forall (i,j,k) & \|y_i - y_j\| \leq \delta(i,k) + \|y_j - y_k\| \end{aligned}$$

Introduction	Problem	Solution	Connections	Experiments	End

ADMISSIBILITY/CONSISTENCY

SIMPLIFIED CONSTRAINTS

A Euclidean heuristic *Y* is admissible and consistent if:

$$\begin{aligned} \forall (i,j) & \|y_i - y_j\| \le \delta(i,j) \\ \forall (i,j,k) & \|y_i - y_j\| \le \delta(i,k) + \|y_j - y_k\| \end{aligned}$$

Theorem

Y is admissible and consistent

Passino and Antsaklis, 1994

Introduction	Problem	Solution	Connections	Experiments	End

ADMISSIBILITY/CONSISTENCY

SIMPLIFIED CONSTRAINTS

A Euclidean heuristic *Y* is admissible and consistent if:

$$\begin{aligned} \forall (i,j) & \|y_i - y_j\| \le \delta(i,j) \\ \forall (i,j,k) & \|y_i - y_j\| \le \delta(i,k) + \|y_j - y_k\| \end{aligned}$$

Theorem *Y* is locally admissible $\forall (i,j) \in E ||y_i - y_j|| \leq \delta(i,j)$ \updownarrow *Y* is admissible and consistent *Passino and Antsaklis, 1994*

Introduction	Problem	Solution	Connections	Experiments	End

Definition (Optimal Euclidean Heuristic) Minimizes the loss between true distances δ and heuristics *h*:

 $\begin{array}{ll} \underset{Y}{\text{minimize}} & \mathcal{L}(Y) \\ \text{subject to} & Y \text{ is admissible and consistent} \end{array}$

Introduction	Problem	Solution	Connections	Experiments	End
D					

Introduction	Problem	Solution	Connections	Experiments	End
D					

Introduction	Problem	Solution	Connections	Experiments	End

Which is better?

Introduction	Problem	Solution	Connections	Experiments	End
DEEINIIN					

Introduction	Problem	Solution	Connections	Experiments	End
DEFINING					

Which is better?

Loss function \mathcal{L} combines errors $\forall (i, j)$ into a single scalar

► specify trade-off: many small errors *vs.* a large error?

Introduction	Problem	Solution	Connections	Experiments	End

Which is better?

- ► specify trade-off: many small errors vs. a large error?
- ► specify relative importance of each state pair

Introduction	Problem	Solution	Connections	Experiments	End

Which is better?

- ► specify trade-off: many small errors vs. a large error?
- specify relative importance of each state pair

$$\mathcal{L}(Y) = \sum_{i,j} W_{ij} \left| \delta(i,j)^2 - \|y_i - y_j\|^2 \right|$$

Introduction	Problem	Solution	Connections	Experiments	End
D==	0 T 0 00				

Which is better?

- ► specify trade-off: many small errors vs. a large error?
- specify relative importance of each state pair

$$\mathcal{L}(Y) = \sum_{i,j} W_{ij} \left| \delta(i,j)^2 - \|y_i - y_j\|^2 \right|$$

Introduction	Problem	Solution	Connections	Experiments	End

Which is better?

- ► specify trade-off: many small errors vs. a large error?
- specify relative importance of each state pair

$$\mathcal{L}(Y) = \sum_{i,j} W_{ij} \left| \delta(i,j)^{2} - \|y_{i} - y_{j}\|^{2} \right|$$

Introduction	Problem	Solution	Connections	Experiments	End

Which is better?

- ► specify trade-off: many small errors vs. a large error?
- specify relative importance of each state pair

$$\mathcal{L}(Y) = \sum_{i,j} W_{ij} \left| \delta(i,j)^2 - \|y_i - y_j\|^2 \right|$$

Introduction	Problem	Solution	Connections	Experiments	End
Definin	G LOSS				

$$\mathcal{L}(Y) = \sum_{i,j} W_{ij} |\delta(i,j)^2 - \|y_i - y_j\|^2|$$

Introduction	Problem	Solution	Connections	Experiments	End
Definin	G LOSS				

$$\mathcal{L}(Y) = \sum_{i,j} W_{ij} |\delta(i,j)^2 - \|y_i - y_j\|^2|$$

Admissibility
$$\rightarrow \delta(i,j)^2 \ge ||y_i - y_j||^2$$

Introduction	Problem	Solution	Connections	Experiments	End
Definin	G LOSS				

$$\mathcal{L}(Y) = \sum_{i,j} W_{ij} |\delta(i,j)^2 - \|y_i - y_j\|^2|$$

Admissibility
$$\rightarrow \delta(i,j)^2 \ge ||y_i - y_j||^2$$

$$\mathcal{L}(Y) = \sum_{i,j} W_{ij}(\delta(i,j)^2 - \|y_i - y_j\|^2)$$

Introduction	Problem	Solution	Connections	Experiments	End
Defini	NG LOSS				

$$\mathcal{L}(Y) = \sum_{i,j} W_{ij} |\delta(i,j)^2 - \|y_i - y_j\|^2|$$

Admissibility
$$\rightarrow \delta(i,j)^2 \ge ||y_i - y_j||^2$$

$$\mathcal{L}(Y) = \sum_{i,j} W_{ij}(\delta(i,j)^2 - \|y_i - y_j\|^2)$$

$$\mathcal{L}(Y) = \sum_{i,j} W_{ij} \delta(i,j)^2 - \sum_{i,j} W_{ij} \|y_i - y_j\|^2$$

Introduction	Problem	Solution	Connections	Experiments	End
Defini	NG LOSS				

$$\mathcal{L}(Y) = \sum_{i,j} W_{ij} |\delta(i,j)^2 - ||y_i - y_j||^2|$$

Admissibility
$$\rightarrow \delta(i,j)^2 \ge ||y_i - y_j||^2$$

$$\mathcal{L}(Y) = \sum_{i,j} W_{ij}(\delta(i,j)^2 - \|y_i - y_j\|^2)$$

$$\mathcal{L}(Y) = \sum_{i,j} W_{ij} \delta(i,j)^2 - \sum_{i,j} W_{ij} ||y_i - y_j||^2$$

Introduction	Problem	Solution	Connections	Experiments	End
DEFINING Simplifying the	LOSS e Objective				

$$\mathcal{L}(Y) = \sum_{i,j} W_{ij} |\delta(i,j)^2 - ||y_i - y_j||^2|$$

Admissibility
$$\rightarrow \delta(i,j)^2 \ge ||y_i - y_j||^2$$

$$\mathcal{L}(Y) = \sum_{i,j} W_{ij}(\delta(i,j)^2 - \|y_i - y_j\|^2)$$

$$\mathcal{L}(Y) = \sum_{i,j} W_{ij} \delta(i,j)^2 - \sum_{i,j} W_{ij} \|y_i - y_j\|^2$$

$$\underset{Y}{\textbf{maximize}} \sum_{i,j} W_{ij} \|y_i - y_j\|^2$$

Introduction	Problem	Solution	Connections	Experiments	End
Connec	CTIONS				

NONLINEAR DIMENSIONALITY REDUCTION

The full optimization problem:

$$\begin{array}{ll} \underset{Y}{\text{maximize}} & \sum_{i,j} W_{ij} \|y_i - y_j\|^2 \\ \text{subject to} & \forall (i,j) \in E \ \|y_i - y_j\| \leq d(i,j) \end{array}$$

Introduction	Problem	Solution	Connections	Experiments	End
Conneg	CTIONS				

NONLINEAR DIMENSIONALITY REDUCTION

The full optimization problem:

$$\begin{array}{ll} \underset{Y}{\text{maximize}} & \sum_{i,j} W_{ij} \|y_i - y_j\|^2 \\ \text{subject to} & \forall (i,j) \in E \ \|y_i - y_j\| \le d(i,j) \end{array}$$

This is a weighted generalization of Weinberger *et al.*'s Maximum Variance Unfolding (MVU)

Introduction	Problem	Solution	Connections	Experiments	End
Conneg	CTIONS				

NONLINEAR DIMENSIONALITY REDUCTION

The full optimization problem:

$$\begin{array}{ll} \underset{Y}{\text{maximize}} & \sum_{i,j} W_{ij} \|y_i - y_j\|^2 \\ \text{subject to} & \forall (i,j) \in E \ \|y_i - y_j\| \le d(i,j) \end{array}$$

This is a weighted generalization of Weinberger *et al.*'s Maximum Variance Unfolding (MVU)

Heuristic learning is linked to manifold learning

Introduction	Problem	Solution	Connections	Experiments	End
MANTEO		TINC			

MANIFOLD LEARNING

What "dimensionality" will hold a search graph?

 Visualization may shed new light on problems

Introduction	Problem	Solution	Connections	Experiments	End
DIFFERE	NTIAL HE	URISTICS			

NG & ZHANG '02, GOLDBERG & HARRELSON '05, STURTEVANT et al.'09

Imagine "hooking" the graph on a pivot state

Introduction	Problem	Solution	Connections	Experiments	End
CONNE Differentia	CTIONS AL HEURISTICS				
Differentia	AL HEURISTICS				

Introduction	Problem	Solution	Connections	Experiments	End
CONNEC Differential	TIONS . Heuristics				

Let "pivot" be state 1 and n = 4:

$$W_{\rm diff} = \left[\begin{array}{rrrr} 0 & 1 & 1 & 1 \\ 1 & 0 & -1/3 & -1/3 \\ 1 & -1/3 & 0 & -1/3 \\ 1 & -1/3 & -1/3 & 0 \end{array} \right]$$

Introduction	Problem	Solution	Connections	Experiments	End
CONNEC Differential	TIONS Heuristics				

Let "pivot" be state 1 and n = 4:

$$W_{\text{diff}} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & -1/3 & -1/3 \\ 1 & -1/3 & 0 & -1/3 \\ 1 & -1/3 & -1/3 & 0 \end{bmatrix}$$

Push points *away* from the pivot state (weight 1)

Introduction	Problem	Solution	Connections	Experiments	End
CONNEC Differential	TIONS Heuristics				

Let "pivot" be state 1 and n = 4:

$$W_{\text{diff}} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & -1/3 & -1/3 \\ 1 & -1/3 & 0 & -1/3 \\ 1 & -1/3 & -1/3 & 0 \end{bmatrix}$$

- Push points *away* from the pivot state (weight 1)
- and pull points *into* each other (weight 1/(n-1))

uction	Problem	Solution	Connections	Experiments	End
DNNEC'	FIONS Heuristics				
DNNEC' ferential	FIONS Heuristics				

Let "pivot" be state 1 and n = 4: Can this be improved?

$$W_{\text{diff}} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & -1/3 & -1/3 \\ 1 & -1/3 & 0 & -1/3 \\ 1 & -1/3 & -1/3 & 0 \end{bmatrix}$$

- Push points *away* from the pivot state (weight 1)
- and pull points *into* each other (weight 1/(n-1))

Introduction	Problem	Solution	Connections	Experiments	End
Connec	CTIONS				
DIFFERENTIA	l Heuristics				

Let "pivot" be state 1 and n = 4: Can this be improved?

$$W_{\rm diff} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & -1/3 & -1/3 \\ 1 & -1/3 & 0 & -1/3 \\ 1 & -1/3 & -1/3 & 0 \end{bmatrix}$$

$$W_{\rm diff}^{+} = \left[\begin{array}{cccc} 0 & 1 & 1 & 1 \\ 1 & 0 & \epsilon & \epsilon \\ 1 & \epsilon & 0 & \epsilon \\ 1 & \epsilon & \epsilon & 0 \end{array} \right]$$

- Push points *away* from the pivot state (weight 1)
- and pull points *into* each other (weight 1/(n-1))

Let's experiment with $\epsilon = 10^{-3}$...

Introduction Problem Solution Connections Experiments End

PATHPLANNING EXPERIMENT

► Maps with 168–6,240 states: standard problem sets

Introduction Problem Solution Connections Experiments End

PATHPLANNING EXPERIMENT

- ► Maps with 168–6,240 states: standard problem sets
- ► Count the nodes A* [Hart *et al.* 68] expands to find a path

Introduction Problem Solution Connections Experiments End

PATHPLANNING EXPERIMENT

- ► Maps with 168–6,240 states: standard problem sets
- ► Count the nodes A* [Hart *et al.* 68] expands to find a path
- Compare W_{diff} and W_{diff}^+ :

Introduction	Problem	Solution	Connections	Experiments	End

CUBE WORLD EXPERIMENT

Differential heuristics' weakness: high dimensionality

Octile grid world, generalized to higher dimensions

Introduction	Problem	Solution	Connections	Experiments	End

CUBE WORLD EXPERIMENT

Differential heuristics' weakness: high dimensionality

- Octile grid world, generalized to higher dimensions
 - ► Agent can increment any/all coordinates by 1 each turn

Introduction	Problem	Solution	Connections	Experiments	End

CUBE WORLD EXPERIMENT

Differential heuristics' weakness: high dimensionality

- Octile grid world, generalized to higher dimensions
 - ► Agent can increment any/all coordinates by 1 each turn
- Transition costs are edge lengths

Introduction	Problem	Solution	Connections	Experiments	End

WORD GRAPH EXPERIMENT

► 4,820 states representing four-letter words

Introduction	Problem	Solution	Connections	Experiments	End

WORD GRAPH EXPERIMENT

- ► 4,820 states representing four-letter words
- Find shortest sequence of 1-letter changes turning start word into goal word

fore
$$\rightarrow$$
 fork \rightarrow ? \rightarrow back

Introduction	Problem	Solution	Connections	Experiments	End
SUMMAI	RY				

Euclidean Heuristic Optimization

A novel way to build admissible/consistent heuristics

- principled link to manifold learning
- generalization of differential heuristics
- promising empirical results on small problems

(Thank you: Ariel Felner, our anonymous reviewers, NSERC and iCore)