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Build memory-efficient data structures before shipping to help:
I Solve “easy” problems in rapid succession
I Any state can be the goal

2/23



Introduction Problem Solution Connections Experiments End

(a) (b)
Dragon Age: Origins (BioWare)

I Straight-line heuristics are easy to compute online

I Improve them by (re-)arranging the search graph offline
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(Example 1) Rearranging a grid world
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(Example 2) Arranging a 2× 3 sliding tile puzzle:
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EUCLIDEAN HEURISTICS

Definition (Euclidean heuristics)
A Euclidean heuristic Y is one whose heuristic values can be
computed as distances in a Euclidean space of d dimensions

h(i, j) = ‖yi − yj‖
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PROBLEM STATEMENT

Look among all Euclidean heuristics Y for one that is best

Definition (Optimal Euclidean Heuristic)
Minimizes the loss between true distances δ and heuristics h:

minimize
Y

L(Y)

subject to Y is admissible and consistent
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ADMISSIBILITY/CONSISTENCY
SIMPLIFIED CONSTRAINTS

A Euclidean heuristic Y is admissible and consistent if:

∀(i, j) ‖yi − yj‖ ≤ δ(i, j)
∀(i, j, k) ‖yi − yj‖ ≤ δ(i, k) + ‖yj − yk‖

Theorem
Y is locally admissible

∀(i, j) ∈ E ‖yi − yj‖ ≤ δ(i, j)
m

Y is admissible and consistent
Passino and Antsaklis, 1994

(one constraint per edge)
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Definition (Optimal Euclidean Heuristic)
Minimizes the loss between true distances δ and heuristics h:

minimize
Y

L(Y)

subject to Y is admissible and consistent
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DEFINING LOSS
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DEFINING LOSS

Which is better?

Loss function L combines errors ∀(i, j) into a single scalar
I specify trade-off: many small errors vs. a large error?
I specify relative importance of each state pair

L(Y) =
∑

i,j

Wij
∣∣δ(i, j)2 − ‖yi − yj‖2∣∣
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DEFINING LOSS
SIMPLIFYING THE OBJECTIVE

L(Y) =
∑

i,j

Wij|δ(i, j)2 − ‖yi − yj‖2|

Admissibility→ δ(i, j)2 ≥ ‖yi − yj‖2

L(Y) =
∑

i,j

Wij(δ(i, j)2 − ‖yi − yj‖2)

L(Y) =
∑

i,j

Wijδ(i, j)2−
∑

i,j

Wij‖yi − yj‖2

maximize
Y

∑
i,j

Wij‖yi − yj‖2
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CONNECTIONS
NONLINEAR DIMENSIONALITY REDUCTION

The full optimization problem:

maximize
Y

∑
i,j

Wij‖yi − yj‖2

subject to ∀(i, j) ∈ E ‖yi − yj‖ ≤ d(i, j)

This is a weighted generalization of Weinberger et al.’s
Maximum Variance Unfolding (MVU)

Heuristic learning is linked to manifold learning
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MANIFOLD LEARNING

I What “dimensionality”
will hold a search graph?

I Visualization may shed
new light on problems
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DIFFERENTIAL HEURISTICS
NG & ZHANG ’02, GOLDBERG & HARRELSON ’05, STURTEVANT et al.’09

Imagine “hooking” the graph on a pivot state
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CONNECTIONS
DIFFERENTIAL HEURISTICS

Our approach recovers differential heuristics when W = Wdiff:

Let “pivot” be state 1 and n = 4:

Wdiff =


0 1 1 1
1 0 −1/3 −1/3
1 −1/3 0 −1/3
1 −1/3 −1/3 0


I Push points away from the

pivot state (weight 1)
I and pull points into each

other (weight 1/(n-1))

Can this be improved?

W+
diff =


0 1 1 1
1 0 ε ε
1 ε 0 ε
1 ε ε 0


Let’s experiment with ε = 10−3...
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PATHPLANNING EXPERIMENT
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I Maps with 168–6,240 states: standard problem sets

I Count the nodes A* [Hart et al. 68] expands to find a path
I Compare Wdiff and W+

diff:
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PATHPLANNING RESULTS

Figure 2: Cube world results, averaged over 10,000 random
problems. Inset plot shows intrinsic three dimensionality.

embedding from a uniformly weighted optimal Euclidean
heuristic is simply the positions of the centers of the unit
cubes. The performance of these two heuristics is compared
in Figure 2. This search space is intrinsically multidimen-
sional, and a heuristic based on the three-dimensional em-
bedding significantly, although not surprisingly, outperforms
the combined heuristics from one-dimensional embeddings
(i.e., differential heuristics) while using less memory.

Game Maps. The next domain is a test suite of path plan-
ning problems from 61 computer game maps containing 168
to 6,240 states. The maps come from Bioware’s Dragon
Age: Origins and the path planning problems are typical
of many computer games. Cardinal moves have unit cost,
and diagonal moves cost 1.5, enabling heuristic values to be
rounded up to the nearest half. Some transitions are blocked
by obstacles, and cutting corners (moving diagonally be-
tween states which are not in a 4-clique) is disallowed to
mimic spatial restrictions on an agent with volume.

In contrast to the cube world, these game maps have low
intrinsic dimensionality — they often feature long ‘corri-
dors’ such as the one shown in Figure 1. As a result, most
paths only require good heuristics on states in corridors,
for which a one-dimensional differential heuristic combined
with the default heuristic suffices. Similarly, the multidimen-
sional embeddings found by applying our method tend to

Figure 2: Cube world results, averaged over 10,000 random
problems. Inset plot shows intrinsic three dimensionality.

unit cubes which may be transitioned between if they share
a vertex. The edge costs between cubes are the distances be-
tween their centers. A perfect heuristic for this simple do-
main is obvious by its construction, but for the purpose of
demonstration we examine building heuristics from scratch.

The differential heuristics have pivots in the four corner
states on the bottom half of the large cube. Meanwhile the
embedding from a uniformly weighted optimal Euclidean
heuristic is simply the positions of the centers of the unit
cubes. The performance of these two heuristics is compared
in Figure 2. This search space is intrinsically multidimen-
sional, and a heuristic based on the three-dimensional em-
bedding significantly, although not suprisingly, outperforms
the combined heuristics from one-dimensional embeddings
(i.e., differential heuristics) using less memory.

Game Maps. The next domain is a test suite of path plan-
ning problems from 61 computer game maps containing 168
to 6,240 states. The maps come from Bioware’s Dragon
Age: Origins and have path planning problems which are
typical of many computer games. Cardinal moves have unit
cost, and diagonal moves cost 1.5, enabling heuristic val-
ues to be rounded up to the nearest half. Some transitions
are blocked by obstacles, and cutting corners (moving diag-
onally between states which are not in a 4-clique) is disal-
lowed to mimic spatial restrictions on an agent with volume.

Figure 2: Results for the cube world (averaged over 50,000
random problems).

Cube World. The cube world is a synthetic domain, gen-
eralizing the octile grid-world to three dimensions. A large
cube whose sides measure 20 units each is divided into 8,000
unit cubes which may be transitioned between if they share
a vertex. The edge costs between cubes are the distances be-
tween their centers. A perfect heuristic for this simple do-
main is obvious by its construction, but for the purpose of
demonstration we examine building heuristics from scratch.

The differential heuristics have pivots in the four corner
states on the bottom half of the large cube. Meanwhile the
embedding from a uniformly weighted optimal Euclidean
heuristic is simply the positions of the centers of the unit
cubes. The performance of these two heuristics is compared
in Figure 2. This search space is intrinsically multidimen-
sional, and a heuristic based on the three-dimensional em-
bedding significantly, although not suprisingly, outperforms
the combined heuristics from one-dimensional embeddings
(i.e., differential heuristics) using less memory.

Game Maps. The next domain is a test suite of path plan-
ning problems from 61 computer game maps containing 168
to 6,240 states. The maps are from Bioware’s Dragon Age:
Origins and feature path planning problems typical of com-
puter games. Cardinal moves have unit cost, and diagonal
moves cost 1.5, enabling heuristic values to be rounded up
to the nearest half. Some transitions are blocked by obsta-
cles, and cutting corners (moving diagonally between states
which are not in a 4-clique) is disallowed to mimic basic
spatial restrictions on an agent with volume.

In contrast to the cube world, these game maps have low
intrinsic dimensionality—they often feature long ‘corridors’
such as the one shown in Figure 1. As a result, most paths
only require good heuristics on states in corridors, for which
a one-dimensional differential heuristic combined with the
default heuristic suffices. Similarly, the multidimensional
embeddings found by applying our method tend to have only
one descriptive dimension, corresponding to the longest cor-
ridor. Storage of the less descriptive dimensions is wasteful

Figure 3: Results on Dragon Age: Origins maps (averaged
over 168,000 problems).

compared to embedding another (distinct) corridor.
With these considerations in mind, we turn to the weight

matrix W . The best way to define W is an open question,
but we take a first step by showing that it can be designed
to augment the differential heuristics defined by an effec-
tive pivot layout. The first pivot is placed in a state farthest
from a randomly chosen seed state. Each subsequent pivot is
placed in a state most distant from the previous pivots. The
nth Euclidean heuristic uses weights W+

diff based on the nth
pivot, where non-pivot entries in W+

diff are set to 10−3. Only
the first principal component of each resulting embedding is
kept, which tends to capture most of the available variance.

Figure 3 shows results from the Hierarchical Open Graph
(HOG) search platform for five heuristics: default octile
heuristic, Differential (1) and (3) (sets of one and three dif-
ferential heuristics, respectively) and Euclidean (1) and (3)
(one and three optimal Euclidean heuristics, respectively,
whose embeddings have one dimension.). The heuristics in
each group are combined with each other and the default
heuristic, taking the maximum. We can see that optimal Eu-
clidean heurstics based on W+

diff are an improvement (albeit
small) over differential heuristics, which optimize using the
weigths Wdiff. It is prudent to note that differential heuris-
tics can be computed more quickly and scale to much larger
problems. Yet, we have shown that the concept of differen-
tial heuristics can be improved upon as suggested by our
optimization interpretation of their construction.

Word Search. In this domain, states represent four-letter
words from the English language. The goal is to change a
given start word into a goal word by changing one letter at
a time. For example, there is an edge between the words
‘fore’ and ‘fork’, but there is no edge between ‘fore’ and
‘pork’. All such transitions have unit cost, enabling us to

Figure 3: Dragon Age: Origins results, from standard prob-
lem sets. Inset plot reveals intrinsic low dimensionality.

In contrast to the cube world, these game maps have low
intrinsic dimensionality—they often feature long ‘corridors’
such as the one shown in Figure 1. As a result, most paths
only require good heuristics on states in corridors, for which
a one-dimensional differential heuristic combined with the
default heuristic suffices. Similarly, the multidimensional
embeddings found by applying our method tend to have
only one descriptive dimension corresponding to the longest
corridor. Storage of less descriptive dimensions is wasteful
compared to embedding another (distinct) corridor.

With these considerations in mind, we turn to the weight
matrix W . The best way to define W is an open question,
but we take a first step by showing that it can be designed
to augment the differential heuristics defined by an effec-
tive pivot layout. The first pivot is placed in a state farthest
from a randomly chosen seed state. Each subsequent pivot is
placed in a state most distant from the previous pivots. The
nth Euclidean heuristic uses weights W+

diff based on the nth
pivot, where non-pivot entries in W+

diff are set to 10−3. From
each embedding only the most descriptive dimension is kept,
which tends to capture most of the available variance.

Figure 3 shows results from the Hierarchical Open Graph
(HOG) search platform for five heuristics: default octile
heuristic, Differential (1) and (3) (sets of one and three dif-
ferential heuristics, respectively) and Euclidean (1) and (3)
(one and three optimal Euclidean heuristics, respectively,
whose embeddings have one dimension.). The heuristics in
each group are combined with each other and the default
heuristic, taking the maximum. Optimal Euclidean heurstics
based on W+

diff are an improvement (albeit small) over dif-
ferential heuristics, which optimize using the weigths Wdiff.
It is prudent to note that differential heuristics can be com-
puted more quickly and scale to much larger problems. Yet,
we have shown that the concept of differential heuristics can
be improved upon as suggested by our optimization inter-
pretation of their construction.

Word Search. This domain’s states represent four-letter
words in English. The goal is to change a start word into
a goal word by changing one letter at a time. For example,

Figure 2: Cube world results, averaged over 10,000 random
problems. Inset plot shows intrinsic three dimensionality.

embedding from a uniformly weighted optimal Euclidean
heuristic is simply the positions of the centers of the unit
cubes. The performance of these two heuristics is compared
in Figure 2. This search space is intrinsically multidimen-
sional, and a heuristic based on the three-dimensional em-
bedding significantly, although not surprisingly, outperforms
the combined heuristics from one-dimensional embeddings
(i.e., differential heuristics) while using less memory.

Game Maps. The next domain is a test suite of path plan-
ning problems from 61 computer game maps containing 168
to 6,240 states. The maps come from Bioware’s Dragon
Age: Origins and the path planning problems are typical
of many computer games. Cardinal moves have unit cost,
and diagonal moves cost 1.5, enabling heuristic values to be
rounded up to the nearest half. Some transitions are blocked
by obstacles, and cutting corners (moving diagonally be-
tween states which are not in a 4-clique) is disallowed to
mimic spatial restrictions on an agent with volume.

In contrast to the cube world, these game maps have low
intrinsic dimensionality — they often feature long ‘corri-
dors’ such as the one shown in Figure 1. As a result, most
paths only require good heuristics on states in corridors,
for which a one-dimensional differential heuristic combined
with the default heuristic suffices. Similarly, the multidimen-
sional embeddings found by applying our method tend to
have only one descriptive dimension corresponding to the
longest corridor. Storage of less descriptive dimensions is
wasteful compared to embedding another (distinct) corridor.

With these considerations in mind, we turn to the weight
matrix W . The best way to define W is an open question,
but we take a first step by showing that it can be designed
to augment the differential heuristics defined by an effec-
tive pivot layout. The first pivot is placed in a state farthest
from a randomly chosen seed state. Each subsequent pivot is
placed in a state most distant from the previous pivots. The
nth Euclidean heuristic uses weights W+

diff based on the nth
pivot, where non-pivot entries in W+

diff are set to 10−3. From
each embedding only the most descriptive dimension is kept,
which tends to capture most of the available variance.
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Figure 3 shows results from the Hierarchical Open Graph
(HOG) search platform for five heuristics: default octile
heuristic, Differential (1) and (3) (sets of one and three dif-
ferential heuristics, respectively) and Euclidean (1) and (3)
(one and three optimal Euclidean heuristics, respectively,
whose embeddings have one dimension). The heuristics in
each group are combined with each other and the default
heuristic by taking the maximum. Optimal Euclidean heuris-
tics based on W+

diff are an improvement (albeit small) over
differential heuristics, which optimize using the weights
Wdiff. It is prudent to note that differential heuristics can be
computed more quickly and scale to much larger problems.
Yet, we have shown that the concept of differential heuris-
tics can be improved upon as suggested by our optimization
interpretation of their construction.

Word Search. This domain’s states represent four-letter
words in English. The goal is to change a start word into
a goal word by changing one letter at a time. For example,
there is an edge between the words ‘fore’ and ‘fork’, but no
edge between ‘fore’ and ‘pork’. All transitions are unit cost,
enabling us to take the ceiling of any heuristic value. We
used the largest connected subgraph of words as the search
space, which is densely connected and has 4,820 states.

To construct differential heuristics, we use the same pivot
layout discussed earlier to situate sets of 6 and 18 pivots.
But here we optimize a multidimensional Euclidean heuris-
tic under a uniform weight matrix W , and consider the top
6 and 18 dimensions of this single embedding. The perfor-
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Figure 2: Cube world results, averaged over 10,000 random
problems. Inset plot shows intrinsic dimensionality: each of
the three dimensions makes an equal contribution.

embedding from a uniformly weighted optimal Euclidean
heuristic is simply the positions of the centers of the unit
cubes. The performance of these two heuristics is compared
in Figure 2. This search space is intrinsically multidimen-
sional, and a heuristic based on the three-dimensional em-
bedding significantly, although not surprisingly, outperforms
the combined heuristics from one-dimensional embeddings
(i.e., differential heuristics) while using less memory.

Game Maps. The next domain is a test suite of path plan-
ning problems from 61 computer game maps containing 168
to 6,240 states. The maps come from Bioware’s Dragon
Age: Origins and the path planning problems are typical
of many computer games. Cardinal moves have unit cost,
and diagonal moves cost 1.5, enabling heuristic values to be
rounded up to the nearest half. Some transitions are blocked
by obstacles, and cutting corners (moving diagonally be-
tween states which are not in a 4-clique) is disallowed to
mimic spatial restrictions on an agent with volume.

In contrast to the cube world, these game maps have low
intrinsic dimensionality — they often feature long ‘corri-
dors’ such as the one shown in Figure 1. As a result, most
paths only require good heuristics on states in corridors,
for which a one-dimensional differential heuristic combined
with the default heuristic suffices. Similarly, the multidimen-
sional embeddings found by applying our method tend to
have only one descriptive dimension corresponding to the
longest corridor. Storage of less descriptive dimensions is
wasteful compared to embedding another (distinct) corridor.

With these considerations in mind, we turn to the weight
matrix W . The best way to define W is an open question,
but we take a first step by showing that it can be designed
to augment the differential heuristics defined by an effec-
tive pivot layout. The first pivot is placed in a state farthest
from a randomly chosen seed state. Each subsequent pivot is
placed in a state most distant from the previous pivots. The
nth Euclidean heuristic uses weights W+

diff based on the nth
pivot, where non-pivot entries in W+
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Figure 3: Dragon Age: Origins results on standard problem
sets. Inset plot reveals low intrinsic dimensionality: the first
dimension of the embedding supports most of the variance.

which tends to capture most of the available variance.
Figure 3 shows results from the Hierarchical Open Graph

(HOG) search platform for five heuristics: default octile
heuristic, Differential (1) and (3) (sets of one and three
differential heuristics, respectively) and Euclidean (1) and
(3) (one and three optimal Euclidean heuristics, respec-
tively, which are restricted to one principal component). The
heuristics in each group are combined with each other and
the default heuristic by taking the maximum. Optimal Eu-
clidean heuristics based on W+

diff are an improvement (albeit
small) over differential heuristics, which optimize using the
weights Wdiff. It is prudent to note that differential heuris-
tics can be computed more quickly and scale to much larger
problems. Yet, we have shown that the concept of differen-
tial heuristics can be improved upon as suggested by our
optimization interpretation of their construction.

Word Search. This domain’s states represent four-letter
words in English. The goal is to change a start word into
a goal word by changing one letter at a time. For example,
there is an edge between the words ‘fore’ and ‘fork’, but no
edge between ‘fore’ and ‘pork’. All transitions are unit cost,
enabling us to take the ceiling of any heuristic value. We
used the largest connected subgraph of words as the search
space, which is densely connected and has 4,820 states.

To construct differential heuristics, we use the same pivot
layout discussed earlier to situate sets of 6 and 18 pivots.
But here we optimize a multidimensional Euclidean heuris-
tic under a uniform weight matrix W , and consider the top

Sets of 1 and 3 differential heuristics vs.
Sets of 1 and 3 Euclidean heuristics (W = Wdiff)
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Figure 2: Cube world results, averaged over 10,000 random
problems. Inset plot shows intrinsic dimensionality: each of
the three dimensions makes an equal contribution.

embedding from a uniformly weighted optimal Euclidean
heuristic is simply the positions of the centers of the unit
cubes. The performance of these two heuristics is compared
in Figure 2. This search space is intrinsically multidimen-
sional, and a heuristic based on the three-dimensional em-
bedding significantly, although not surprisingly, outperforms
the combined heuristics from one-dimensional embeddings
(i.e., differential heuristics) while using less memory.

Game Maps. The next domain is a test suite of path plan-
ning problems from 61 computer game maps containing 168
to 6,240 states. The maps come from Bioware’s Dragon
Age: Origins and the path planning problems are typical
of many computer games. Cardinal moves have unit cost,
and diagonal moves cost 1.5, enabling heuristic values to be
rounded up to the nearest half. Some transitions are blocked
by obstacles, and cutting corners (moving diagonally be-
tween states which are not in a 4-clique) is disallowed to
mimic spatial restrictions on an agent with volume.

In contrast to the cube world, these game maps have low
intrinsic dimensionality — they often feature long ‘corri-
dors’ such as the one shown in Figure 1. As a result, most
paths only require good heuristics on states in corridors,
for which a one-dimensional differential heuristic combined
with the default heuristic suffices. Similarly, the multidimen-
sional embeddings found by applying our method tend to
have only one descriptive dimension corresponding to the
longest corridor. Storage of less descriptive dimensions is
wasteful compared to embedding another (distinct) corridor.

With these considerations in mind, we turn to the weight
matrix W . The best way to define W is an open question,
but we take a first step by showing that it can be designed

Figure 2: Cube world results, averaged over 10,000 random
problems. Inset plot shows intrinsic three dimensionality.
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in Figure 2. This search space is intrinsically multidimen-
sional, and a heuristic based on the three-dimensional em-
bedding significantly, although not surprisingly, outperforms
the combined heuristics from one-dimensional embeddings
(i.e., differential heuristics) while using less memory.

Game Maps. The next domain is a test suite of path plan-
ning problems from 61 computer game maps containing 168
to 6,240 states. The maps come from Bioware’s Dragon
Age: Origins and the path planning problems are typical
of many computer games. Cardinal moves have unit cost,
and diagonal moves cost 1.5, enabling heuristic values to be
rounded up to the nearest half. Some transitions are blocked
by obstacles, and cutting corners (moving diagonally be-
tween states which are not in a 4-clique) is disallowed to
mimic spatial restrictions on an agent with volume.

In contrast to the cube world, these game maps have low
intrinsic dimensionality — they often feature long ‘corri-
dors’ such as the one shown in Figure 1. As a result, most
paths only require good heuristics on states in corridors,
for which a one-dimensional differential heuristic combined
with the default heuristic suffices. Similarly, the multidimen-
sional embeddings found by applying our method tend to

Figure 2: Cube world results, averaged over 10,000 random
problems. Inset plot shows intrinsic three dimensionality.

unit cubes which may be transitioned between if they share
a vertex. The edge costs between cubes are the distances be-
tween their centers. A perfect heuristic for this simple do-
main is obvious by its construction, but for the purpose of
demonstration we examine building heuristics from scratch.

The differential heuristics have pivots in the four corner
states on the bottom half of the large cube. Meanwhile the
embedding from a uniformly weighted optimal Euclidean
heuristic is simply the positions of the centers of the unit
cubes. The performance of these two heuristics is compared
in Figure 2. This search space is intrinsically multidimen-
sional, and a heuristic based on the three-dimensional em-
bedding significantly, although not suprisingly, outperforms
the combined heuristics from one-dimensional embeddings
(i.e., differential heuristics) using less memory.

Game Maps. The next domain is a test suite of path plan-
ning problems from 61 computer game maps containing 168
to 6,240 states. The maps come from Bioware’s Dragon
Age: Origins and have path planning problems which are
typical of many computer games. Cardinal moves have unit
cost, and diagonal moves cost 1.5, enabling heuristic val-
ues to be rounded up to the nearest half. Some transitions
are blocked by obstacles, and cutting corners (moving diag-
onally between states which are not in a 4-clique) is disal-
lowed to mimic spatial restrictions on an agent with volume.

Figure 2: Results for the cube world (averaged over 50,000
random problems).

Cube World. The cube world is a synthetic domain, gen-
eralizing the octile grid-world to three dimensions. A large
cube whose sides measure 20 units each is divided into 8,000
unit cubes which may be transitioned between if they share
a vertex. The edge costs between cubes are the distances be-
tween their centers. A perfect heuristic for this simple do-
main is obvious by its construction, but for the purpose of
demonstration we examine building heuristics from scratch.

The differential heuristics have pivots in the four corner
states on the bottom half of the large cube. Meanwhile the
embedding from a uniformly weighted optimal Euclidean
heuristic is simply the positions of the centers of the unit
cubes. The performance of these two heuristics is compared
in Figure 2. This search space is intrinsically multidimen-
sional, and a heuristic based on the three-dimensional em-
bedding significantly, although not suprisingly, outperforms
the combined heuristics from one-dimensional embeddings
(i.e., differential heuristics) using less memory.

Game Maps. The next domain is a test suite of path plan-
ning problems from 61 computer game maps containing 168
to 6,240 states. The maps are from Bioware’s Dragon Age:
Origins and feature path planning problems typical of com-
puter games. Cardinal moves have unit cost, and diagonal
moves cost 1.5, enabling heuristic values to be rounded up
to the nearest half. Some transitions are blocked by obsta-
cles, and cutting corners (moving diagonally between states
which are not in a 4-clique) is disallowed to mimic basic
spatial restrictions on an agent with volume.

In contrast to the cube world, these game maps have low
intrinsic dimensionality—they often feature long ‘corridors’
such as the one shown in Figure 1. As a result, most paths
only require good heuristics on states in corridors, for which
a one-dimensional differential heuristic combined with the
default heuristic suffices. Similarly, the multidimensional
embeddings found by applying our method tend to have only
one descriptive dimension, corresponding to the longest cor-
ridor. Storage of the less descriptive dimensions is wasteful

Figure 3: Results on Dragon Age: Origins maps (averaged
over 168,000 problems).

compared to embedding another (distinct) corridor.
With these considerations in mind, we turn to the weight

matrix W . The best way to define W is an open question,
but we take a first step by showing that it can be designed
to augment the differential heuristics defined by an effec-
tive pivot layout. The first pivot is placed in a state farthest
from a randomly chosen seed state. Each subsequent pivot is
placed in a state most distant from the previous pivots. The
nth Euclidean heuristic uses weights W+

diff based on the nth
pivot, where non-pivot entries in W+

diff are set to 10−3. Only
the first principal component of each resulting embedding is
kept, which tends to capture most of the available variance.

Figure 3 shows results from the Hierarchical Open Graph
(HOG) search platform for five heuristics: default octile
heuristic, Differential (1) and (3) (sets of one and three dif-
ferential heuristics, respectively) and Euclidean (1) and (3)
(one and three optimal Euclidean heuristics, respectively,
whose embeddings have one dimension.). The heuristics in
each group are combined with each other and the default
heuristic, taking the maximum. We can see that optimal Eu-
clidean heurstics based on W+

diff are an improvement (albeit
small) over differential heuristics, which optimize using the
weigths Wdiff. It is prudent to note that differential heuris-
tics can be computed more quickly and scale to much larger
problems. Yet, we have shown that the concept of differen-
tial heuristics can be improved upon as suggested by our
optimization interpretation of their construction.

Word Search. In this domain, states represent four-letter
words from the English language. The goal is to change a
given start word into a goal word by changing one letter at
a time. For example, there is an edge between the words
‘fore’ and ‘fork’, but there is no edge between ‘fore’ and
‘pork’. All such transitions have unit cost, enabling us to

Figure 3: Dragon Age: Origins results, from standard prob-
lem sets. Inset plot reveals intrinsic low dimensionality.

In contrast to the cube world, these game maps have low
intrinsic dimensionality—they often feature long ‘corridors’
such as the one shown in Figure 1. As a result, most paths
only require good heuristics on states in corridors, for which
a one-dimensional differential heuristic combined with the
default heuristic suffices. Similarly, the multidimensional
embeddings found by applying our method tend to have
only one descriptive dimension corresponding to the longest
corridor. Storage of less descriptive dimensions is wasteful
compared to embedding another (distinct) corridor.

With these considerations in mind, we turn to the weight
matrix W . The best way to define W is an open question,
but we take a first step by showing that it can be designed
to augment the differential heuristics defined by an effec-
tive pivot layout. The first pivot is placed in a state farthest
from a randomly chosen seed state. Each subsequent pivot is
placed in a state most distant from the previous pivots. The
nth Euclidean heuristic uses weights W+

diff based on the nth
pivot, where non-pivot entries in W+

diff are set to 10−3. From
each embedding only the most descriptive dimension is kept,
which tends to capture most of the available variance.

Figure 3 shows results from the Hierarchical Open Graph
(HOG) search platform for five heuristics: default octile
heuristic, Differential (1) and (3) (sets of one and three dif-
ferential heuristics, respectively) and Euclidean (1) and (3)
(one and three optimal Euclidean heuristics, respectively,
whose embeddings have one dimension.). The heuristics in
each group are combined with each other and the default
heuristic, taking the maximum. Optimal Euclidean heurstics
based on W+

diff are an improvement (albeit small) over dif-
ferential heuristics, which optimize using the weigths Wdiff.
It is prudent to note that differential heuristics can be com-
puted more quickly and scale to much larger problems. Yet,
we have shown that the concept of differential heuristics can
be improved upon as suggested by our optimization inter-
pretation of their construction.

Word Search. This domain’s states represent four-letter
words in English. The goal is to change a start word into
a goal word by changing one letter at a time. For example,
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embedding from a uniformly weighted optimal Euclidean
heuristic is simply the positions of the centers of the unit
cubes. The performance of these two heuristics is compared
in Figure 2. This search space is intrinsically multidimen-
sional, and a heuristic based on the three-dimensional em-
bedding significantly, although not surprisingly, outperforms
the combined heuristics from one-dimensional embeddings
(i.e., differential heuristics) while using less memory.

Game Maps. The next domain is a test suite of path plan-
ning problems from 61 computer game maps containing 168
to 6,240 states. The maps come from Bioware’s Dragon
Age: Origins and the path planning problems are typical
of many computer games. Cardinal moves have unit cost,
and diagonal moves cost 1.5, enabling heuristic values to be
rounded up to the nearest half. Some transitions are blocked
by obstacles, and cutting corners (moving diagonally be-
tween states which are not in a 4-clique) is disallowed to
mimic spatial restrictions on an agent with volume.

In contrast to the cube world, these game maps have low
intrinsic dimensionality — they often feature long ‘corri-
dors’ such as the one shown in Figure 1. As a result, most
paths only require good heuristics on states in corridors,
for which a one-dimensional differential heuristic combined
with the default heuristic suffices. Similarly, the multidimen-
sional embeddings found by applying our method tend to
have only one descriptive dimension corresponding to the
longest corridor. Storage of less descriptive dimensions is
wasteful compared to embedding another (distinct) corridor.

With these considerations in mind, we turn to the weight
matrix W . The best way to define W is an open question,
but we take a first step by showing that it can be designed
to augment the differential heuristics defined by an effec-
tive pivot layout. The first pivot is placed in a state farthest
from a randomly chosen seed state. Each subsequent pivot is
placed in a state most distant from the previous pivots. The
nth Euclidean heuristic uses weights W+

diff based on the nth
pivot, where non-pivot entries in W+

diff are set to 10−3. From
each embedding only the most descriptive dimension is kept,
which tends to capture most of the available variance.

Figure 3: Dragon Age: Origins results, from standard prob-
lem sets. Inset plot reveals low intrinsic dimensionality.

Figure 3 shows results from the Hierarchical Open Graph
(HOG) search platform for five heuristics: default octile
heuristic, Differential (1) and (3) (sets of one and three dif-
ferential heuristics, respectively) and Euclidean (1) and (3)
(one and three optimal Euclidean heuristics, respectively,
whose embeddings have one dimension). The heuristics in
each group are combined with each other and the default
heuristic by taking the maximum. Optimal Euclidean heuris-
tics based on W+

diff are an improvement (albeit small) over
differential heuristics, which optimize using the weights
Wdiff. It is prudent to note that differential heuristics can be
computed more quickly and scale to much larger problems.
Yet, we have shown that the concept of differential heuris-
tics can be improved upon as suggested by our optimization
interpretation of their construction.

Word Search. This domain’s states represent four-letter
words in English. The goal is to change a start word into
a goal word by changing one letter at a time. For example,
there is an edge between the words ‘fore’ and ‘fork’, but no
edge between ‘fore’ and ‘pork’. All transitions are unit cost,
enabling us to take the ceiling of any heuristic value. We
used the largest connected subgraph of words as the search
space, which is densely connected and has 4,820 states.

To construct differential heuristics, we use the same pivot
layout discussed earlier to situate sets of 6 and 18 pivots.
But here we optimize a multidimensional Euclidean heuris-
tic under a uniform weight matrix W , and consider the top
6 and 18 dimensions of this single embedding. The perfor-
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have only one descriptive dimension corresponding to the
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With these considerations in mind, we turn to the weight
matrix W . The best way to define W is an open question,
but we take a first step by showing that it can be designed
to augment the differential heuristics defined by an effec-
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from a randomly chosen seed state. Each subsequent pivot is
placed in a state most distant from the previous pivots. The
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pivot, where non-pivot entries in W+
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(HOG) search platform for five heuristics: default octile
heuristic, Differential (1) and (3) (sets of one and three dif-
ferential heuristics, respectively) and Euclidean (1) and (3)
(one and three optimal Euclidean heuristics, respectively,
whose embeddings have one dimension). The heuristics in
each group are combined with each other and the default
heuristic by taking the maximum. Optimal Euclidean heuris-
tics based on W+

diff are an improvement (albeit small) over
differential heuristics, which optimize using the weights
Wdiff. It is prudent to note that differential heuristics can be
computed more quickly and scale to much larger problems.
Yet, we have shown that the concept of differential heuris-
tics can be improved upon as suggested by our optimization
interpretation of their construction.

Word Search. This domain’s states represent four-letter
words in English. The goal is to change a start word into
a goal word by changing one letter at a time. For example,
there is an edge between the words ‘fore’ and ‘fork’, but no
edge between ‘fore’ and ‘pork’. All transitions are unit cost,
enabling us to take the ceiling of any heuristic value. We
used the largest connected subgraph of words as the search
space, which is densely connected and has 4,820 states.

To construct differential heuristics, we use the same pivot
layout discussed earlier to situate sets of 6 and 18 pivots.
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embedding from a uniformly weighted optimal Euclidean
heuristic is simply the positions of the centers of the unit
cubes. The performance of these two heuristics is compared
in Figure 2. This search space is intrinsically multidimen-
sional, and a heuristic based on the three-dimensional em-
bedding significantly, although not surprisingly, outperforms
the combined heuristics from one-dimensional embeddings
(i.e., differential heuristics) while using less memory.

Game Maps. The next domain is a test suite of path plan-
ning problems from 61 computer game maps containing 168
to 6,240 states. The maps come from Bioware’s Dragon
Age: Origins and the path planning problems are typical
of many computer games. Cardinal moves have unit cost,
and diagonal moves cost 1.5, enabling heuristic values to be
rounded up to the nearest half. Some transitions are blocked
by obstacles, and cutting corners (moving diagonally be-
tween states which are not in a 4-clique) is disallowed to
mimic spatial restrictions on an agent with volume.

In contrast to the cube world, these game maps have low
intrinsic dimensionality — they often feature long ‘corri-
dors’ such as the one shown in Figure 1. As a result, most
paths only require good heuristics on states in corridors,
for which a one-dimensional differential heuristic combined
with the default heuristic suffices. Similarly, the multidimen-
sional embeddings found by applying our method tend to
have only one descriptive dimension corresponding to the
longest corridor. Storage of less descriptive dimensions is
wasteful compared to embedding another (distinct) corridor.

With these considerations in mind, we turn to the weight
matrix W . The best way to define W is an open question,
but we take a first step by showing that it can be designed
to augment the differential heuristics defined by an effec-
tive pivot layout. The first pivot is placed in a state farthest
from a randomly chosen seed state. Each subsequent pivot is
placed in a state most distant from the previous pivots. The
nth Euclidean heuristic uses weights W+

diff based on the nth
pivot, where non-pivot entries in W+

diff are set to 10−3. From
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which tends to capture most of the available variance.
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heuristic, Differential (1) and (3) (sets of one and three
differential heuristics, respectively) and Euclidean (1) and
(3) (one and three optimal Euclidean heuristics, respec-
tively, which are restricted to one principal component). The
heuristics in each group are combined with each other and
the default heuristic by taking the maximum. Optimal Eu-
clidean heuristics based on W+

diff are an improvement (albeit
small) over differential heuristics, which optimize using the
weights Wdiff. It is prudent to note that differential heuris-
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problems. Yet, we have shown that the concept of differen-
tial heuristics can be improved upon as suggested by our
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Word Search. This domain’s states represent four-letter
words in English. The goal is to change a start word into
a goal word by changing one letter at a time. For example,
there is an edge between the words ‘fore’ and ‘fork’, but no
edge between ‘fore’ and ‘pork’. All transitions are unit cost,
enabling us to take the ceiling of any heuristic value. We
used the largest connected subgraph of words as the search
space, which is densely connected and has 4,820 states.

To construct differential heuristics, we use the same pivot
layout discussed earlier to situate sets of 6 and 18 pivots.
But here we optimize a multidimensional Euclidean heuris-
tic under a uniform weight matrix W , and consider the top

Figure 3: Dragon Age: Origins results on standard problem
sets. Inset plot reveals low intrinsic dimensionality: the first
dimension of the embedding supports most of the variance.

to augment the differential heuristics defined by an effec-
tive pivot layout. The first pivot is placed in a state farthest
from a randomly chosen seed state. Each subsequent pivot is
placed in a state most distant from the previous pivots. The
nth Euclidean heuristic uses weights W+

diff based on the nth
pivot, where non-pivot entries in W+

diff are set to 10−3. From
each embedding only the most descriptive dimension is kept,
which tends to capture most of the available variance.

Figure 3 shows results from the Hierarchical Open Graph
(HOG) search platform for five heuristics: default octile
heuristic, Differential (1) and (3) (sets of one and three
differential heuristics, respectively) and Euclidean (1) and
(3) (one and three optimal Euclidean heuristics, respec-
tively, which are restricted to one principal component). The
heuristics in each group are combined with each other and
the default heuristic by taking the maximum. Optimal Eu-
clidean heuristics based on W+

diff are an improvement (albeit
small) over differential heuristics, which optimize using the
weights Wdiff. It is prudent to note that differential heuris-
tics can be computed more quickly and scale to much larger
problems. Yet, we have shown that the concept of differen-
tial heuristics can be improved upon as suggested by our
optimization interpretation of their construction.

Word Search. This domain’s states represent four-letter
words in English. The goal is to change a start word into
a goal word by changing one letter at a time. For example,
there is an edge between the words ‘fore’ and ‘fork’, but no
edge between ‘fore’ and ‘pork’. All transitions are unit cost,
enabling us to take the ceiling of any heuristic value. We
used the largest connected subgraph of words as the search
space, which is densely connected and has 4,820 states.

To construct differential heuristics, we use the same pivot
layout discussed earlier to situate sets of 6 and 18 pivots.
But here we optimize a multidimensional Euclidean heuris-
tic under a uniform weight matrix W , and consider the top
6 and 18 dimensions of this single embedding. The perfor-
mance of these heuristics is compared in Figure 4. Note the
performance of differential heuristics actually improves on

Set of 4 differential heuristics vs.
one 3-dimensional Euclidean heuristic (Wij = 1)

20/23



Introduction Problem Solution Connections Experiments End

WORD GRAPH EXPERIMENT

I 4,820 states representing four-letter words

I Find shortest sequence of 1-letter changes
turning start word into goal word

fore→ fork→ ? → back
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WORD GRAPH RESULTS

Figure 4: Word search results, averaged over 10,000 random
problems. Inset plot shows variance over many dimensions.

Conclusion
This paper introduced a novel approach to constructing ad-
missible and consistent heuristics as the solution to a con-
strained optimization problem – one that has already been
studied in the field of dimensionality reduction. The ap-
proach generalizes differential heuristics beyond a single
dimension. Furthermore it enabled a number of insights,
including the bias in the implied objective of differential
heuristics, and tying the success of differential heuristics to
the intrinsic dimensionality of the search space as recovered
from our proposed optimization.

The observed connection between heuristic search and di-
mensionality reduction appears highly profitable. Heuristic
search is a natural application for manifold learning tech-
niques of which MVU is just one. The work in this pa-
per can be extended in a number of directions: scaling to
larger problems (Weinberger et al. 2006), fundamentally dif-
ferent objective functions, or away from Euclidean metrics
and into non-Euclidean geometries (Walter 2004). We have
only touched the surface of what could grow into a highly
beneficial relationship between these two subfields.
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SUMMARY

Euclidean Heuristic Optimization
A novel way to build admissible/consistent heuristics

I principled link to manifold learning
I generalization of differential heuristics
I promising empirical results on small problems

(Thank you: Ariel Felner, our anonymous reviewers,
NSERC and iCore)
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