Real-Time Heuristic Search with a Priority Queue

D. Chris Rayner and Katherine Davison and Vadim Bulitko and Kenneth Anderson and Jieshan Lu
University of Alberta
Department of Computing Science
Edmonton, Alberta, Canada T6G 2E8
{rayner|kdavison|bulitko|anderson|jieshan }t@ualberta.ca

Abstract new state values depend upon the order in which the updates
occur; a judicious update ordering can make an individual
update more effective. Second, a significant update to a state
often affects the state’s neighbors, and giving priority to these
neighbors can focus computation on the most worthwhile up-
dates.

The rest of the paper is organized as follows: first, we for-
ing real-time search algorithm based on Prioritized ~ Mally describe the problem. Next, we examine and identify
Sweeping. P-LRTA* focuses learning on important the shortcomings of rglated algorithms, _and motivate our ap-
areas of the search space, where the importance of proach. We then provide a comprehensive description of our

a state is determined by the magnitude of the up- novel algorithm, and i_ts general properties. Next we just_ify
dates made to neighboring states. Empirical tests our performance metrics and conduct an empirical evaluation.

on path-planning in commercial game maps show We conclude by considering possible extensions to P-LRTA*.

a substantial learning speed-up over state-of-the-art
real-time search algorithms.

Learning real-time search, which interleaves plan-
ning and acting, allows agents to learn from mul-
tiple trials and respond quickly. Such algorithms
require no prior knowledge of the environment
and can be deployed without pre-processing. We
introduce Prioritized-LRTA* (P-LRTA*), a learn-

2 Problem Formulation

1 Introductlon .)) ~ We focus on problems defined by the tuple
Real-time search algorithms interleave planning and acting t0S A, ¢, 50,54, h0): S is a finite set of statesA is a
generate actions in user-bounded time. These algorithms agt of deterministic actions that cause state transitions, and
alsoagent-centerefKoenig, 2001: they do notrequira pri- (s q) is the cost of performing actiom € A in states € S;

ori knowledge of the map, they learn the transition model byif executing action actiom in states returns the agent to
interacting with the environment, and they improve their so-states, that action is said to bielocked Blocked actions are
lutions by reflnlng a heuristic function over multlple trials. discovered when they are within the agemsbmty radius
Algorithms with these three properties can be used for paththe distance at which the agent can sense the environment
planning in computer games, virtual reality trainfBini et and update its transition model.

al,, 200d, and robotic§Koenig and Simmons, 1998In each The agent begins in a particular start stafes S and aims

of these domains, agents plan and act in potentially unknow[b reach the goal state,, Upon reaching a goal state the

z.g\grciﬁgn;nésr;tvr‘]’gz';'r?gnt'g?tl tﬁk?om;ﬁrge ;gg’egr}gfﬁ]gﬁi%'gent is teleported back to the start state and commences a
lon, 9 pportunity to Improve its p Hew trial. We say that such a learning agent converges when

by learning. EX?‘mp'es '”C'“d‘? commute-type tasks, such 6\?completes a trial without updating the heuristic value of any
resource collection and patrolling. state

Our focus is on the learning process. Since the learning .))
takes place on-line and on-site, it is critical to minimize learn- FOr every action executed, the agent incurs a cost associ-
ing time to converge rapidly to high-quality solutions. ated with that action. In general, any real-valued costs lower-

We build on existing research and present a learning reaRounded by a positive constant can be used. We assume that
time search algorithm that makes learning more experiencebh€ state space is safely explorable insomuch as a goal state
efficient by prioritizing updatefMoore and Atkeson, 1993 IS reachable from any state.

States that are deemed important are updated before otherThe agent deals with its initial uncertainty about whether
states, where importance is determined by the magnitude @ action is blocked in a particular state by assuming that all
the updates made to a neighboring state. Prioritizing heurisactions from all states are unblocked; this belief is known
tic updates for efficient learning is motivated by two obser-as thefreespace assumptidiKoenig et al, 2003. As the
vations about asynchronous dynamic programniBartoet agent explores, it can learn and remember which actions are
al., 1999. First, since states are updated one at a time, thpossible in which states, and plan accordingly.

3 Related Work PRIORITIZED-LRTA*(s)

. . Lo . while s # s, do
A real-time agent is situated at any time in a single state StateUpdate(s)

known as itscurrent state The current state can be changed

; . : . ; repeat
by taking actions and incurring an execution cost. An agent 2 — queue.pop()
can reach the goal from the current state in one of two ways: if p £ s tHen
the agent can plan all the way to the goal and then act, or the StategUpdate(p)

agentcan make an incomplete plan, execute the plan, ar_ld then end if

repeat until reaching the goal. We review search algorithms until N states are updated gueue

for both approaches. _ s < neighbor s’ with lowesff (s, s')
An incremental A* agent plans a complete path from its gng while

current state to the goal using its world model, then begins to

execute this plan. This path is optimal given the agent’s cur-

rent knowledge. If, during execution, the agent discovers thakigure 1:The P-LRTA* agent updates the current state, s, and

its planned path is blocked, the agent stops and re-plans wit$ many as NV states taken from the queue. The agent then

updated world knowledge. Each plan is generated with affkes @ single greedy move.

A* search[Hartet al,, 1969, so the time needed for the first

move and for re-planning i©(n log n), wheren is the num- -) .

ber of states. Algorithms such as Dynamic A* (CiStentz, Koenig's LRTA* [Koenig, 2004 updates the heuristic val-

1999 and D* Lite [Koenig and Likhachev, 20Q2fficiently ~ UeS of all LSS states on each move to a(_:celerate the conver-

correct the current plan rather than reproduce it, but they dg€nce process. The Dijkstra-style relaxation procedure it uses

not reduce the computation needed before the first move diroduces highly informed heuristics but the process is expen-

each trial can be executed. A large first-move delay negaSVe: and_ this I|m|t_s the size of LSS that can be used in real-

tively affects an agent's responsiveness in interactive envirorime settinggKoenig and Likhachev, 2006 _

ments such as computer games or high-speed robotics. In an attempt to reduce convergence execution cost, PR-
In its simplest form, Korf's Learning Real-Time A* LRTS [Bulitko et al, 2009 builds a hierarchy of levels of

(LRTA*) [1990] updates the current state only with respect todbstraction and runs search algorithms on each level. The
its immediate neighbors. We refer to this version of LRTA* search at the higher levels of abstraction constrains the lower-

as LRTA*(d=1). If the initial heuristic is non-overestimating level searches to promising sections of the map, reducing the

then LRTA* converges optimallfKorf, 1990. The amount number of states explored in lower levels. As a result, con-
vergence travel and first move delay are improved at the cost

of travel on each trial during learning can oscillate unpre- f lex imol tati d the additional tati
dictably, causing an agent to behave in a seemingly irration a compiex impiementation and the additional computation
quired to maintain the abstraction hierarchy during explo-

manner. Heuristic weighting and learning a separate upperlet.
bound reduces the path length instabili8himbo and Ishida, ration. . . -

2003; Bulitko and Lee, 2036 but can result in suboptimal A different line of f_esea“?h co_n3|ders sop_h|st|catec_zl up-
soluti’ons date schemes for real-time dynamic programming algorithms.

) As Barto, Bradtke, and Singh note, “[the] subset of states
We define thdocal search spacé._SS) as the set of states vﬁﬂose costs are backed up changes from stage to stage, and

expanded by an agent when planning a move (a state is callgle oysice of these subsets determines the precise nature of
expanded if all its successors are generated). LRTA*(d=1 he algorithm” [1995]. Prioritized Sweeping, a reinforce-
only looks at the current state’s immediate neighbors, butc%qent learning algorithm, performs updates in order of pri-

deeper lookahead gives an agent more information to deci IS ; .
. : . rity [Moore and Atkeson, 1993 A state has high priority
on the next actiofiorf, 1994. For instance, LRT$Bulitko if it has a large potential change in its value function. Only

e i e e K o bl 116 i peental uitegrctr thare add o e
by a partial A* seérch from the éurrent state to the goal [2004; ueue. Prioritized va_eeplng Is shown to be more experience
2006] efficient than Q-learning and Dyna-fVoore and Atkeson,

o . . 1999, and is a core influence for our algorithm.

Updating more than one state value in each planning stage
can result in more efficient learning. One example of this .
is physical backtracking: SLA*, SLA*TShue and Zamani, 4 Novel Algorithm
1993a; 1993b; Shust al, 2001, v-Trap[Bulitko, 2004, and Prioritized-LRTA* (P-LRTA*) combines the ranked updates
LRTS [Bulitko and Lee, 200ball physically return to previ- of Prioritized Sweeping with LRTA*'s real-time search as-
ously visited states, potentially reducing the number of tri-sumptions of a deterministic environment and a non-trivial
als needed for convergence with the possibility of increasinitial heuristic. In this section we describe P-LRTA*'s algo-
ing travel cost. Alternatively, LRTA*(k)[Herrandez and rithmic details, then comment on the nature of its execution.
Meseguer, 2005b; 200baisesmentalbackups to decrease The P-LRTA* agent has a planning phase and an acting
the number of convergence trials. These two techniques agghase. In its planning phase, the agent updates the current
difficult to combine, and a recent study demonstrates the fragstate s by considering its immediate neighbors (Figure 2).
ile and highly context-specific effects of combining physical The amount by which the current state’s value changes is
and mental backugd$Sigmundarson and Bjnsson, 2006 stored in a variablel\. Next, the current state’s neighbors are

=0
=c

(s,8") + h(s")

STATEUPDATE(S) specifies a maximum queue size. This guarantees a hard limit
find neighbors’ with the lowestf (s, s’) = c(s,s') + h(s’) ~ on the memory and computational time used while enabling

A < f(s,8") — h(s) the algorithm to process arbitrarily small updates when the
if A > 0then queue is not full.
h(s) < f(s,s") Because P-LRTA* specifies that the current state always be
for all neighbors: of s do updated, P-LRTA* degenerates to Korf's LRTA*(d={Korf,
AddToQueue(n, A) 199d when the size of the queue is 0.
end for P-LRTA* is also similar to Herandez's LRTA*(k) algo-
end if rithm [Herrandez and Meseguer, 2005b; 20p&dich sim-

ilarly updates neighboring states using a bounded queue.
i .) However, our algorithm differs in both the treatment of the
Flgure 2: Th/e value of stage s is set to the lowest avasllable queue and the propagation of updates. First, P-LRTA*s
;((‘Z’,f g;rl rﬁg‘ie)s"t"r’geéfstcéf;c ")fr'sr:]h:,?g?;gf tgi‘l’e:}”t%éovglhzn(ﬂ queue disallows duplicate states and is prioritized. This
s changes, its neighbors are enqueued. goal. avoids rev_isitin_g unnecessary states and concentrates updates
' on potentially important states instead of states local to the
ADDTOQUEUE(s, A,) agent. Second, our algorithm retains the queue’s contents
1T between movement phases. The agent’s location is always
if queue. full() then updated; hpwever, if more important_ updates are occurring
find stater € queue with smallestA elsewhere in the map, they' will continue to propagate. Al-
if A < A. then " ternatively, _LR_’TA*(k) clears its queue after every movement
" s phase restricting updates to remain local to the agent. Finally,
we do not restrict heuristic propagation to previously visited
states.
else . This design leads to an LSS which is not necessari]y con-
queue.insert(s, A,) tiguous or dgpendent on the agent’s current state. ThI'S prop-
end if »TE ertyis beneficial, as a chan_ge_ to a single state’s heurls_tlc value
can indeed affect the heuristic values of many, potentially re-
mote, states. One might consider limiting how far updates
can propagate into unexplored regions of the state space, but
Figure 3: State s is inserted into the queue if there is room our experiments showed that this limitation does not have a
in the queue or if its priority is greater than that of some en- significant impact on P-LRTA*'s performance.
queued state r. State s will not be enqueued twice. The P-LRTA* algorithm we present specifies only a pri-
oritized learning process and greedy action selection. But
enqueued with priorityA. If the queue is full, the entry with P-LRTA* can be modified to select actions in a way that
lowest priority is removed (Figure 3). P-LRTA*, like LRTA*, incorporates techniques from other algorithms, such as in-
requires no initial world model, and updates that spread t¢reased lookahead within a specified radi@ilitko and
unseen states use the freespace assumption. Lee, 2008, heuristic WeightindShimbo and Ishida, 2003;
Once the current state’s heuristic is updated, a series of prBulitko and Lee, 200k or preferentially taking actions that
oritized updates begins. At moat states are taken from the take the agent through recently updated sti€esnig, 2004.
top of the queue and updated using the procedure in Figure :ll_ . .
If there are still states in the queue after thieupdates, they heoretical Evaluation
remain in the queue to be used in the next planning phase. Similar to Korf's LRTA* [Korf, 1990, P-LRTA* can be
Having completed the planning phase, the agent moves tgewed as a special case of Baetial.'s Trial-Based RTDP. In
the acting phase. The agent takes a single action, moving tbe following theorems, we show that the theoretical guaran-
the neighboring state with the minimum-valuedf(s,s’) = tees of Trial-Based RTDP still hold for P-LRTA* and explain
c(s,s') + h(s"), wherec(s, s') is the cost of traveling ta’ its time and space complexity.

andh(s') is the current estimated cost of traveling frefto Theorem 1 P-LRTA* converges to an optimal solution from
the closest goal state (Figure 1). a start states, € S to a goal states, € S when the initial
heuristic is admissible.

5 Algorithm Properties Our algorithm meets criteria set out for convergence by
In this section we make general observations of the key feaBartoet al. in [Bartoet al, 1999. It is shown that Trial-
tures that make P-LRTA* different from other learning real- Based RTDP, and by extension P-LRTA*, converges to an op-
time search algorithms. Next, we discuss P-LRTA*s conver-timal policy in undiscounted shortest path problems for any
gence, as well as its space and time complexity. start states, and any set of goal staté§ when there exists a
policy that takes the agent to the goal with probability 1.

Key Features and Design Theorem 2 P-LRTA*s per-move time complexity is in
Unlike Prioritized Sweeping’s parameter, which restricts O(m - log(q)), wherem is the maximum number of updates
potentially small updates from entering the queue, P-LRTA*per time step and is the size of the queue.

if s ¢ queue then

queue.remove(r)
queue.insert(s, Ag)
end if

end if

The primary source of P-LRTA*s per-move time complex- 7 Experimental Results

ity comes from then updates the algorithm performs, where \ye ran search algorithms on path-planning problems on five
m can be specified. Each of theseupdates potentially re- gigterent maps taken from a best-selling commercial com-

sults inb queue insertions, whereis the branching factor , ter game. This particular testbed was used to take advan-
at the current state. Each of these insertions requires that Wgge of the published data that were logged in it. The number
check whether that state is already queug(l usingahash t'states in each map is 2,765, 7,637, 13,765, 14,098, and
table) and whether or not it has high enough priority to beyg 145 e generated 2,000 problems for each map, result-
queued Q(log(q)) using an ordered balanced tree). ing in a total of 10,000 unique path planning problems to be

. solved by each of the 12 competing parameterized algorithms
Theorem 3 P-LRTA*'s memory requirements are of space (Ta\llz)le 1)){ peting p 'z gon

complexityO(|:S]), where| S| is the size of the state space. * Thg agent incurs unit costs for moving between states in a

P-LRTA* requires memory for both its environmental cardinal direction, and costs ¢f2 for moving diagonally. All

model and the states on the queue. Learning a model of dR€ algorithms experimented with usetile distancdBulitko
a priori unknown environment necessitates keeping track ofnd Lee, 200Bas the initial heuristid, which is the precise
a constant number of connections between ufStostates. execution cost that would be incurred by the agent if there

Also, because duplicate states are disallowed, the maximul{€re @ clear path to the goal. The maps are initially unknown
number of states in the queug cannot excee(s|. to each of the agents, and the uncertainty about the map is
’ handled using the aforementioned freespace assumption. The

visibility radius of each algorithm is set to 10, which limits
6 Performance Metrics each agent in what it knows about the world before it begins
lanning.

Real-time search algorithms are often used when system rg— We cgmpare P-LRTA* to five algorithms: incremental A*,
sponse time and user experience are important, and so WERTA*(d=1), LRTS(d=10y=0.5,T=0), PR-LRTS with incre-
measure the performance of search algorithms using the fomental A* on the base level and LRTS(d550.5,T=0) on
lowing metrics. the first abstract level. The LRTS parameters were hand-

First-move lags the time before the agent can make its firsttuned for low convergence execution cost. Since the size of
move. We measure an algorithm’s first-move lag in terms oKoenig's A*-defined local search space is a similar parame-
the number of states touched on finst move of thdasttrial, ter to P-LRTA*s queue size, we compare against Koenig’s
that is, after the agent has converged on a solution. This is ihRTA* using local search spaces of size 10, 20, 30, and 40.
line with previous research in real-time search and enables us
to compare new results to old results.

Suboptimality of the final solutiois the percentage-wise o oo
amount that the length of the final path is longer than the i i
length of the optimal path. —— LRTS(é=10, gamma=0.5, T=0
. —*— PR-LRTS:A*, LRTS(d=5, gamma=0.5, T=0)|
Planning time per unit of distance traveladdicates the 10'l] —B— PLATA(queue=39, updates=40)
amount of planning per step. In real-time multi-agent applica: — Incremental &

tions, this measure is upper bounded by the application cor
straints €.g, producing an action at each time step in a video
game). An algorithm’s planning time is measured in terms of
the number of states touched per unit of distance traveled.
The memory consumeid the number of heuristic values
stored in the heuristic table. In our experiments, this mea
sure does not include the memory used to store the obserwve
map as all algorithms we run use the same map representati
mechanism.
Learning heuristic search algorithms typically learn over e 5 e s % 5 e
multiple trials. We useonvergence execution cdst mea- Soluonength
sure the total distance physically traveled by an agent duriny

:he Ie"’t‘mm? 3rgcetis. We trnbea;surgtthls t'ﬂ terms of the ﬂ'slfigure 4: Convergence e_xecution cost averaged over 1,000

ance lraveied by the agent betore 11S path converges, w e[)?oblems and plotted against optimal solution length. Graph

distance is measured in terms of the cosf traveling from g in semi-log. LRTA*(d=1) has a large convergence execution

one state to the next. cost, while P-LRTA*(queueSize=39,updates=40) has conver-
Note that to keep the measures platform independent, wgence execution cost comparable to Incremental A*.

report planning time as the number of stateschedby an

algorithm. A state is considered touched when its heuristic Each algorithm’s performance is tabulated for comparison

value is accessed by the algorithm. There is a linear correldn Table 1. Incremental A* and LRTA*(d=1) demonstrate

tion between the number of states touched and the wall timextremes: incremental A* has the minimum convergence ex-

taken for our implementation. ecution cost and stores no heuristic values, but its first-move

Convergence execution cost

Algorithm Execution Planning Lag Heuristic Memory| Suboptimality (%)

Incremental A* 158.3+13 49.8+11 | 2255.2+ 280 0 0
LRTA*(d=1) 9808.5+ 1721 | 7.2+00 8.2+00 307.8+5.1 0

LRTS(d=10,y=0.5, T=0) 3067.4+ 5044 | 208.6+1.4 | 1852.9+6.9 24.6+12 0.9+ 002

PR-LRTS(d=5y =0.5,T=0) 831.9+ 791 57.6+03 548.5+ 17 9.3+04 1.0+ 002
Koenig’s LRTA*(LSS=10) 2903.1+515 | 70.9+162 | 173.1+03 4245+ 76 0
Koenig's LRTA*(LSS=20) 2088.6+393 | 130.1+35 | 322.1+06 440.2+ 82 0
Koenig’'s LRTA*(LSS=30) 1753.2+ 324 | 188.6+50 | 460.1+11 448.8+ 382 0
Koenig's LRTA*(LSS=40) 1584.4+ 315 | 250.8+75 | 593.9+ 16 460.4+ 8.7 0
P-LRTA*(queueSize=9, updates=10) 1236.0+215 | 40.3+0.9 8.2+00 339.0+5.2 0
P-LRTA*(queueSize=19, updates=20) 708.2+11.9 83.7+138 8.3+00 39344158 0
P-LRTA*(queueSize=29, updates=30) 539.1+ss 129.7+ 27 8.4+00 4447+ 63 0
P-LRTA*(queueSize=39, updates=40) 462.4+73 175.5+ 36 8.3+01 504.1+ 7.2 0

Table 1:Results on 10,000 problems with visibility radius of 10. The results for Incremental A*, LRTA*, LRTS, and PR-LRTS are
taken from [Bulitko et al., 2005].

lag is the greatest of all algorithms because it plans all thaffect performance. That is, when we increase the maximum
way to the goal. LRTA*(d=1) has the largest convergence exnumber of updates with a fixed queue size, the convergence
ecution cost as a result of its simplistic update procedure, bugxecution cost decreases; the same happens when we increase
its first-move lag and planning costs are extremely low. Fothe queue size with a fixed maximum number of updates (Fig-
each parameterization, P-LRTA* has a first-move lag compaure 5). This demonstrates that P-LRTA*'s parameters provide
rable to LRTA*(d=1), and its convergence execution cost istwo effective ways of changing the algorithm to meet specific
even lower than algorithms that use sophisticated abstractictime and/or space requirements.

routines, such as PR-LRTS.

Figure 4 shows the average convergence execution co
of the algorithms on 1,000 problems of various lengths: P-gt Future Work
LRTA*s convergence execution cost is comparable to in-Prioritized LRTA* is a simple, effective algorithm that invites
cremental A*'s. This indicates that heuristic learning in P-further analysis. In the future we will extend P-LRTA* to
LRTA* is efficient enough so that the expense of learning theinclude dynamic parameterization, as in some settings it may
heuristic function is comparable to the expense of learninpe beneficial to use extra memory as it becomes available. P-
thea priori unknown map itself. LRTA* provides a convenient way to take advantage of free
memory: the queue size can be dynamically adjusted.

P-LRTA* may benefit from a more sophisticated action-
selection scheme than the purely greedy decision-maknig
process we present. P-LRTA*s simplicity makes it easy to
experiment with a number of recent real-time search tech-
nigues that improve convergence time.

State abstraction has been successfully applied to real-time
heuristic searcfBulitko et al, 2009. A hybrid approach that
combines prioritized updates with state abstraction is likely
to produce a search routine that is more powerful than either
method alone. Another interesting direction is to extend P-
LRTA* to handle dynamic environments in real-time by in-
cluding focused exploration and allowing heuristic values to
decrease.

10000 ~

8000 +

6000 —

4000 +

2000 +

Convergence Execution Cost

9 Conclusions

Incremental search algorithms and real-time search algo-
rithms meet different requirements. Incremental search algo-
rithms such as A* have a short convergence process, but can
Maximum Number of Updates suffer from arbitrarily long delays before responding. Real-
time search works under a hard limit on the amount of compu-
Figure 5:The impact of queue size and maximum number of tation per move, but its long on-line interactive learning pro-
updates on convergence execution cost. cess reduces its applicability when good solutions are needed
Using the same set of 10,000 problems used to generafeom the start.
Table 1, we explore P-LRTA*'s parameter space. This exper- P-LRTA* has aresponse time on par with the fastest known
iment reveals that the queue size and the maximum numbeeal-time search algorithms. At the same time, its learning
of updates per move exhibit some independence in how thegrocess converges in a time comparable to that of mere map

discovery in A*, P-LRTA* can learn twice as fast on the ac- [Koenig and Likhachev, 2002Sven Koenig and Maxim
tual map as a state-of-the-art PR-LRTS learns on a smaller Likhachev. D* Lite. InProceedings of the National Con-
abstract map. ference on Atrtificial Intelligencgages 476—483, 2002.

As a step toward rapid-response algo_rithms t_hat |ea”ﬂKoenig and Likhachev, 2006Sven Koenig and Maxim
quickly, we presented a real-time heuristic algorithm that | jkhachev. Real-time adaptive A*. IRroceedings of the

combines LRTA*'s aggressive initial heuristics and Priori- |yternational Joint Conference on Autonomous Agents and
tized Sweeping’s ranking of state updates. P-LRTA* does not Multiagent Systems (AAMAS)006.

require the mag@ priori making it well suited to virtual re-

ality trainers and computer games in which believable agentd<0enig and Simmons, 1998Sven Koenig and Reid Sim-
can only see limited portions of the world. mons. Solving robot navigation problems with initial pose

uncertainty using real-time heuristic search. Piroceed-
ings of the International Conference on Atrtificial Intelli-
Acknowledgments gence Planning Systenpsages 144 — 153, 1998.

We would like to thank Nathan Sturtevant for developing[Koeniget al, 2003 Sven Koenig, Craig Tovey, and Yuri
HOG (Hierarchical Open Graph), the simulation framework Smirnov. Performance bounds for planning in unknown
we used to generate our empirical results. We would also terrain. Artificial Intelligence 147:253-279, 2003.

like to thank Mitja Lustrek, David Thue, and several anony- 1y e nig 2001 Sven Koenig. Agent-centered searetifi-
mous reviewers for their helpful comments. This work was cial Ir’ltelligence Magaziné2(4)'109—132 2001

supported by NSERC and iCore of Canada. .))
[Koenig, 2004 Sven Koenig. A comparison of fast search

methods for real-time situated agents. Aroceedings of

References the Third International Joint Conference on Autonomous

[Bartoet al, 1999 Andrew Barto, Steven Bradtke, and Agents and Multiagent Systems (AAMAS3ges 864 —
Satinder Singh. Learning to act using real-time dynamic 871, 2004.

programming Artificial Intelligence 72(1):81-138, 1995. [Korf, 1990 Richard Korf. Real-time heuristic searchArti-

[Bulitko and Lee, 200p Vadim Bulitko and Greg Lee. ficial Intelligence 42(2-3):189-211, 1990.
Learning in real time search: A unifying framewodaur- [Moore and Atkeson, 1993Andrew Moore and Chris Atke-
nal of Artificial Intelligence Resear¢25:119 — 157, 2006. son. Prioritized sweeping: Reinforcement learning with

[Bulitko et al, 2005 Vadim Bulitko, Nathan Sturtevant, and €SS data and less timéMachine Learning 13:103-130,
Maryia Kazakevich. Speeding up learning in real-time 1993.
search via automatic state abstraction.Phloceedings of [Shimbo and Ishida, 2003Viasashi Shimbo and Toru Ishida.
the National Conference on Atrtificial Intelligence (AAAI) Controlling the learning process of real-time heuristic
pages 1349 — 1354, Pittsburgh, Pennsylvania, 2005. search Artificial Intelligence 146(1):1-41, 2003.

[Bulitko, 2004 Vadim Bulitko. Learning for adaptive real- [Shue and Zamani, 199Ba.i-Yen Shue and Reza Zamani.
time search. Technical report, Computer Science Research An admissible heuristic search algorithm. Rroceed-
Repository (CoRR), 2004. ings of the 7th International Symposium on Methodologies

[Dini et al, 2004 Don M. Dini, Michael Van Lent, Paul Car- for Intelligent Systems (ISMIS-93jolume 689 ofLNA,

S : pages 69—75. Springer Verlag, 1993.
penter, and Kumar lyer. Building robust planning and i))
execution systems for virtual worids. Rroceedings of [Shue and Zamani, 199Bl.i-Yen Shue and Reza Zamani.
the Artificial Intelligence and Interactive Digital Enter- A heuristic search algorithm with learning capability. In
tainment conference (AlIDEMarina del Rey, California, ACME Transactionspages 233-236, 1993.
2006. [Shueet al,, 2001 Li-Yen Shue, S.-T. Li, and Reza Zamani.
[Hartet al, 196§ Peter E. Hart, Nils J. Nilsson, and Bertram AN intelligent heuristic algorithm for project scheduling
Raphael. A formal basis for the heuristic determination Problems. InProceedings of the Thirty Second Annual
of minimum cost paths.|[EEE Transactions on Systems Meeting of the Decision Sciences Instifusan Francisco,
Science and Cybernetic$(2):100-107, 1968. 1
[Sigmundarson and Bfnsson, 2006 Sverrir Sigmundarson
and Yngvi Bprnsson. Value back-propagation vs back-
tracking in real-time heuristic search. IRroceed-
ings of the National Conference on Atrtificial Intelligence
(AAAI), Workshop on Learning For SeardBoston, Mas-
sachusetts, 2006.
, . [Stentz, 1996 Anthony Stentz. The focussed D* algorithm
[Herrandez and Meseguer, 20d50arlos Herandez and for real-time replanning. IdProceedings of the Interna-

Pedro Meseguer. LRTA*(K). IRroceedings of the 19th In- : : g .
ternational Joint Conference on Artificial Intelligence (1J- tllfosggl_\llggé Clggf5erence on Artificial Intelligencpages

CAl), Edinburgh, UK, 2005.

[Hernandez and Meseguer, 2005@arlos Herandez and
Pedro Meseguer. Improving convergence of LRTA*(K).
In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), Workshop on Planning and
Learning in A Priori Unknown or Dynamic Domaingd-
inburgh, UK, 2005.

