
Real-Time Heuristic Search with a Priority Queue

D. Chris Rayner and Katherine Davison and Vadim Bulitko and Kenneth Anderson and Jieshan Lu
University of Alberta

Department of Computing Science
Edmonton, Alberta, Canada T6G 2E8

{rayner|kdavison|bulitko|anderson|jieshan }@ualberta.ca

Abstract

Learning real-time search, which interleaves plan-
ning and acting, allows agents to learn from mul-
tiple trials and respond quickly. Such algorithms
require no prior knowledge of the environment
and can be deployed without pre-processing. We
introduce Prioritized-LRTA* (P-LRTA*), a learn-
ing real-time search algorithm based on Prioritized
Sweeping. P-LRTA* focuses learning on important
areas of the search space, where the importance of
a state is determined by the magnitude of the up-
dates made to neighboring states. Empirical tests
on path-planning in commercial game maps show
a substantial learning speed-up over state-of-the-art
real-time search algorithms.

1 Introduction
Real-time search algorithms interleave planning and acting to
generate actions in user-bounded time. These algorithms are
alsoagent-centered[Koenig, 2001]: they do not requirea pri-
ori knowledge of the map, they learn the transition model by
interacting with the environment, and they improve their so-
lutions by refining a heuristic function over multiple trials.
Algorithms with these three properties can be used for path-
planning in computer games, virtual reality trainers[Dini et
al., 2006], and robotics[Koenig and Simmons, 1998]. In each
of these domains, agents plan and act in potentially unknown
environments; when identical tasks must be solved in succes-
sion, the agent has an opportunity to improve its performance
by learning. Examples include commute-type tasks, such as
resource collection and patrolling.

Our focus is on the learning process. Since the learning
takes place on-line and on-site, it is critical to minimize learn-
ing time to converge rapidly to high-quality solutions.

We build on existing research and present a learning real-
time search algorithm that makes learning more experience-
efficient by prioritizing updates[Moore and Atkeson, 1993].
States that are deemed important are updated before other
states, where importance is determined by the magnitude of
the updates made to a neighboring state. Prioritizing heuris-
tic updates for efficient learning is motivated by two obser-
vations about asynchronous dynamic programming[Bartoet
al., 1995]. First, since states are updated one at a time, the

new state values depend upon the order in which the updates
occur; a judicious update ordering can make an individual
update more effective. Second, a significant update to a state
often affects the state’s neighbors, and giving priority to these
neighbors can focus computation on the most worthwhile up-
dates.

The rest of the paper is organized as follows: first, we for-
mally describe the problem. Next, we examine and identify
the shortcomings of related algorithms, and motivate our ap-
proach. We then provide a comprehensive description of our
novel algorithm, and its general properties. Next we justify
our performance metrics and conduct an empirical evaluation.
We conclude by considering possible extensions to P-LRTA*.

2 Problem Formulation

We focus on problems defined by the tuple
(S, A, c, s0, sg, h0): S is a finite set of states,A is a
set of deterministic actions that cause state transitions, and
c(s, a) is the cost of performing actiona ∈ A in states ∈ S;
if executing action actiona in states returns the agent to
states, that action is said to beblocked. Blocked actions are
discovered when they are within the agent’svisibility radius,
the distance at which the agent can sense the environment
and update its transition model.

The agent begins in a particular start states0 ∈ S and aims
to reach the goal statesg. Upon reaching a goal state the
agent is teleported back to the start state and commences a
new trial. We say that such a learning agent converges when
it completes a trial without updating the heuristic value of any
state.

For every action executed, the agent incurs a cost associ-
ated with that action. In general, any real-valued costs lower-
bounded by a positive constant can be used. We assume that
the state space is safely explorable insomuch as a goal state
is reachable from any state.

The agent deals with its initial uncertainty about whether
an action is blocked in a particular state by assuming that all
actions from all states are unblocked; this belief is known
as thefreespace assumption[Koenig et al., 2003]. As the
agent explores, it can learn and remember which actions are
possible in which states, and plan accordingly.

3 Related Work

A real-time agent is situated at any time in a single state
known as itscurrent state. The current state can be changed
by taking actions and incurring an execution cost. An agent
can reach the goal from the current state in one of two ways:
the agent can plan all the way to the goal and then act, or the
agent can make an incomplete plan, execute the plan, and then
repeat until reaching the goal. We review search algorithms
for both approaches.

An incremental A* agent plans a complete path from its
current state to the goal using its world model, then begins to
execute this plan. This path is optimal given the agent’s cur-
rent knowledge. If, during execution, the agent discovers that
its planned path is blocked, the agent stops and re-plans with
updated world knowledge. Each plan is generated with an
A* search[Hart et al., 1968], so the time needed for the first
move and for re-planning isO(n log n), wheren is the num-
ber of states. Algorithms such as Dynamic A* (D*)[Stentz,
1995] and D* Lite [Koenig and Likhachev, 2002] efficiently
correct the current plan rather than reproduce it, but they do
not reduce the computation needed before the first move of
each trial can be executed. A large first-move delay nega-
tively affects an agent’s responsiveness in interactive environ-
ments such as computer games or high-speed robotics.

In its simplest form, Korf’s Learning Real-Time A*
(LRTA*) [1990] updates the current state only with respect to
its immediate neighbors. We refer to this version of LRTA*
as LRTA*(d=1). If the initial heuristic is non-overestimating
then LRTA* converges optimally[Korf, 1990]. The amount
of travel on each trial during learning can oscillate unpre-
dictably, causing an agent to behave in a seemingly irrational
manner. Heuristic weighting and learning a separate upper
bound reduces the path length instability[Shimbo and Ishida,
2003; Bulitko and Lee, 2006], but can result in suboptimal
solutions.

We define thelocal search space(LSS) as the set of states
expanded by an agent when planning a move (a state is called
expanded if all its successors are generated). LRTA*(d=1)
only looks at the current state’s immediate neighbors, but a
deeper lookahead gives an agent more information to decide
on the next action[Korf, 1990]. For instance, LRTS[Bulitko
and Lee, 2006] considers all of the states within a radiusd of
the current state. Alternatively, Koenig uses an LSS defined
by a partial A* search from the current state to the goal [2004;
2006].

Updating more than one state value in each planning stage
can result in more efficient learning. One example of this
is physical backtracking: SLA*, SLA*T[Shue and Zamani,
1993a; 1993b; Shueet al., 2001], γ-Trap[Bulitko, 2004], and
LRTS [Bulitko and Lee, 2006] all physically return to previ-
ously visited states, potentially reducing the number of tri-
als needed for convergence with the possibility of increas-
ing travel cost. Alternatively, LRTA*(k)[Herńandez and
Meseguer, 2005b; 2005a] usesmentalbackups to decrease
the number of convergence trials. These two techniques are
difficult to combine, and a recent study demonstrates the frag-
ile and highly context-specific effects of combining physical
and mental backups[Sigmundarson and Björnsson, 2006].

PRIORITIZED-LRTA*(s)
while s 6= sg do

StateUpdate(s)
repeat

p = queue.pop()
if p 6= sg then

StateUpdate(p)
end if

until N states are updated orqueue = ∅
s ⇐ neighbor s’ with lowestf(s, s′) = c(s, s′) + h(s′)

end while

Figure 1:The P-LRTA* agent updates the current state, s, and
as many as N states taken from the queue. The agent then
takes a single greedy move.

Koenig’s LRTA* [Koenig, 2004] updates the heuristic val-
ues of all LSS states on each move to accelerate the conver-
gence process. The Dijkstra-style relaxation procedure it uses
produces highly informed heuristics but the process is expen-
sive, and this limits the size of LSS that can be used in real-
time settings[Koenig and Likhachev, 2006].

In an attempt to reduce convergence execution cost, PR-
LRTS [Bulitko et al., 2005] builds a hierarchy of levels of
abstraction and runs search algorithms on each level. The
search at the higher levels of abstraction constrains the lower-
level searches to promising sections of the map, reducing the
number of states explored in lower levels. As a result, con-
vergence travel and first move delay are improved at the cost
of a complex implementation and the additional computation
required to maintain the abstraction hierarchy during explo-
ration.

A different line of research considers sophisticated up-
date schemes for real-time dynamic programming algorithms.
As Barto, Bradtke, and Singh note, “[the] subset of states
whose costs are backed up changes from stage to stage, and
the choice of these subsets determines the precise nature of
the algorithm” [1995]. Prioritized Sweeping, a reinforce-
ment learning algorithm, performs updates in order of pri-
ority [Moore and Atkeson, 1993]. A state has high priority
if it has a large potential change in its value function. Only
states with a potential update greater thanε are added to the
queue. Prioritized Sweeping is shown to be more experience
efficient than Q-learning and Dyna-PI[Moore and Atkeson,
1993], and is a core influence for our algorithm.

4 Novel Algorithm
Prioritized-LRTA* (P-LRTA*) combines the ranked updates
of Prioritized Sweeping with LRTA*’s real-time search as-
sumptions of a deterministic environment and a non-trivial
initial heuristic. In this section we describe P-LRTA*’s algo-
rithmic details, then comment on the nature of its execution.

The P-LRTA* agent has a planning phase and an acting
phase. In its planning phase, the agent updates the current
states by considering its immediate neighbors (Figure 2).
The amount by which the current state’s value changes is
stored in a variable,∆. Next, the current state’s neighbors are

STATEUPDATE(s)
find neighbors′ with the lowestf(s, s′) = c(s, s′) + h(s′)
∆ ⇐ f(s, s′)− h(s)
if ∆ > 0 then

h(s) ⇐ f(s, s′)
for all neighborsn of s do

AddToQueue(n, ∆)
end for

end if

Figure 2: The value of state s is set to the lowest available
c(s, s′) + h(s′), where c(s, s′) is the cost of traveling to s′, and
h(s′) estimates the distance from s′ to the goal. If the value of
s changes, its neighbors are enqueued.

ADDTOQUEUE(s,∆s)
if s /∈ queue then

if queue.full() then
find stater ∈ queue with smallest∆r

if ∆r < ∆s then
queue.remove(r)
queue.insert(s,∆s)

end if
else

queue.insert(s,∆s)
end if

end if

Figure 3: State s is inserted into the queue if there is room
in the queue or if its priority is greater than that of some en-
queued state r. State s will not be enqueued twice.

enqueued with priority∆. If the queue is full, the entry with
lowest priority is removed (Figure 3). P-LRTA*, like LRTA*,
requires no initial world model, and updates that spread to
unseen states use the freespace assumption.

Once the current state’s heuristic is updated, a series of pri-
oritized updates begins. At mostN states are taken from the
top of the queue and updated using the procedure in Figure 1.
If there are still states in the queue after theN updates, they
remain in the queue to be used in the next planning phase.

Having completed the planning phase, the agent moves to
the acting phase. The agent takes a single action, moving to
the neighboring states′ with the minimum-valuedf(s, s′) =
c(s, s′) + h(s′), wherec(s, s′) is the cost of traveling tos′

andh(s′) is the current estimated cost of traveling froms′ to
the closest goal state (Figure 1).

5 Algorithm Properties
In this section we make general observations of the key fea-
tures that make P-LRTA* different from other learning real-
time search algorithms. Next, we discuss P-LRTA*’s conver-
gence, as well as its space and time complexity.

Key Features and Design
Unlike Prioritized Sweeping’sε parameter, which restricts
potentially small updates from entering the queue, P-LRTA*

specifies a maximum queue size. This guarantees a hard limit
on the memory and computational time used while enabling
the algorithm to process arbitrarily small updates when the
queue is not full.

Because P-LRTA* specifies that the current state always be
updated, P-LRTA* degenerates to Korf’s LRTA*(d=1)[Korf,
1990] when the size of the queue is 0.

P-LRTA* is also similar to Herńandez’s LRTA*(k) algo-
rithm [Herńandez and Meseguer, 2005b; 2005a] which sim-
ilarly updates neighboring states using a bounded queue.
However, our algorithm differs in both the treatment of the
queue and the propagation of updates. First, P-LRTA*’s
queue disallows duplicate states and is prioritized. This
avoids revisiting unnecessary states and concentrates updates
on potentially important states instead of states local to the
agent. Second, our algorithm retains the queue’s contents
between movement phases. The agent’s location is always
updated; however, if more important updates are occurring
elsewhere in the map, they will continue to propagate. Al-
ternatively, LRTA*(k) clears its queue after every movement
phase restricting updates to remain local to the agent. Finally,
we do not restrict heuristic propagation to previously visited
states.

This design leads to an LSS which is not necessarily con-
tiguous or dependent on the agent’s current state. This prop-
erty is beneficial, as a change to a single state’s heuristic value
can indeed affect the heuristic values of many, potentially re-
mote, states. One might consider limiting how far updates
can propagate into unexplored regions of the state space, but
our experiments showed that this limitation does not have a
significant impact on P-LRTA*’s performance.

The P-LRTA* algorithm we present specifies only a pri-
oritized learning process and greedy action selection. But
P-LRTA* can be modified to select actions in a way that
incorporates techniques from other algorithms, such as in-
creased lookahead within a specified radius[Bulitko and
Lee, 2006], heuristic weighting[Shimbo and Ishida, 2003;
Bulitko and Lee, 2006], or preferentially taking actions that
take the agent through recently updated states[Koenig, 2004].

Theoretical Evaluation
Similar to Korf’s LRTA* [Korf, 1990], P-LRTA* can be
viewed as a special case of Bartoet al.’s Trial-Based RTDP. In
the following theorems, we show that the theoretical guaran-
tees of Trial-Based RTDP still hold for P-LRTA* and explain
its time and space complexity.

Theorem 1 P-LRTA* converges to an optimal solution from
a start states0 ∈ S to a goal statesg ∈ S when the initial
heuristic is admissible.

Our algorithm meets criteria set out for convergence by
Barto et al. in [Barto et al., 1995]. It is shown that Trial-
Based RTDP, and by extension P-LRTA*, converges to an op-
timal policy in undiscounted shortest path problems for any
start states0 and any set of goal statesSg when there exists a
policy that takes the agent to the goal with probability 1.

Theorem 2 P-LRTA*’s per-move time complexity is in
O(m · log(q)), wherem is the maximum number of updates
per time step andq is the size of the queue.

The primary source of P-LRTA*’s per-move time complex-
ity comes from them updates the algorithm performs, where
m can be specified. Each of thesem updates potentially re-
sults in b queue insertions, whereb is the branching factor
at the current state. Each of these insertions requires that we
check whether that state is already queued (O(1) using a hash
table) and whether or not it has high enough priority to be
queued (O(log(q)) using an ordered balanced tree).

Theorem 3 P-LRTA*’s memory requirements are of space
complexityO(|S|), where|S| is the size of the state space.

P-LRTA* requires memory for both its environmental
model and the states on the queue. Learning a model of an
a priori unknown environment necessitates keeping track of
a constant number of connections between up to|S| states.
Also, because duplicate states are disallowed, the maximum
number of states in the queue,q, cannot exceed|S|.

6 Performance Metrics

Real-time search algorithms are often used when system re-
sponse time and user experience are important, and so we
measure the performance of search algorithms using the fol-
lowing metrics.

First-move lagis the time before the agent can make its first
move. We measure an algorithm’s first-move lag in terms of
the number of states touched on thefirst move of thelast trial;
that is, after the agent has converged on a solution. This is in
line with previous research in real-time search and enables us
to compare new results to old results.

Suboptimality of the final solutionis the percentage-wise
amount that the length of the final path is longer than the
length of the optimal path.

Planning time per unit of distance traveledindicates the
amount of planning per step. In real-time multi-agent applica-
tions, this measure is upper bounded by the application con-
straints (e.g., producing an action at each time step in a video
game). An algorithm’s planning time is measured in terms of
the number of states touched per unit of distance traveled.

The memory consumedis the number of heuristic values
stored in the heuristic table. In our experiments, this mea-
sure does not include the memory used to store the observed
map as all algorithms we run use the same map representation
mechanism.

Learning heuristic search algorithms typically learn over
multiple trials. We useconvergence execution costto mea-
sure the total distance physically traveled by an agent during
the learning process. We measure this in terms of the dis-
tance traveled by the agent before its path converges, where
distance is measured in terms of the costc of traveling from
one state to the next.

Note that to keep the measures platform independent, we
report planning time as the number of statestouchedby an
algorithm. A state is considered touched when its heuristic
value is accessed by the algorithm. There is a linear correla-
tion between the number of states touched and the wall time
taken for our implementation.

7 Experimental Results
We ran search algorithms on path-planning problems on five
different maps taken from a best-selling commercial com-
puter game. This particular testbed was used to take advan-
tage of the published data that were logged in it. The number
of states in each map is 2,765, 7,637, 13,765, 14,098, and
16,142. We generated 2,000 problems for each map, result-
ing in a total of 10,000 unique path planning problems to be
solved by each of the 12 competing parameterized algorithms
(Table 1).

The agent incurs unit costs for moving between states in a
cardinal direction, and costs of

√
2 for moving diagonally. All

the algorithms experimented with useoctile distance[Bulitko
and Lee, 2006] as the initial heuristich0, which is the precise
execution cost that would be incurred by the agent if there
were a clear path to the goal. The maps are initially unknown
to each of the agents, and the uncertainty about the map is
handled using the aforementioned freespace assumption. The
visibility radius of each algorithm is set to 10, which limits
each agent in what it knows about the world before it begins
planning.

We compare P-LRTA* to five algorithms: incremental A*,
LRTA*(d=1), LRTS(d=10,γ=0.5,T=0), PR-LRTS with incre-
mental A* on the base level and LRTS(d=5,γ=0.5,T=0) on
the first abstract level. The LRTS parameters were hand-
tuned for low convergence execution cost. Since the size of
Koenig’s A*-defined local search space is a similar parame-
ter to P-LRTA*’s queue size, we compare against Koenig’s
LRTA* using local search spaces of size 10, 20, 30, and 40.

0 10 20 30 40 50 60 70 80 90 100
101

102

103

104

105

Solution length

C
on

ve
rg

en
ce

 e
xe

cu
tio

n
co

st

Koenig LRTA*(LSS=40)

LRTA*

LRTS(d=10, gamma=0.5, T=0

PR!LRTS:A*, LRTS(d=5, gamma=0.5, T=0)

P!LRTA*(queue=39, updates=40)

Incremental A*

Figure 4: Convergence execution cost averaged over 1,000
problems and plotted against optimal solution length. Graph
is in semi-log. LRTA*(d=1) has a large convergence execution
cost, while P-LRTA*(queueSize=39,updates=40) has conver-
gence execution cost comparable to Incremental A*.

Each algorithm’s performance is tabulated for comparison
in Table 1. Incremental A* and LRTA*(d=1) demonstrate
extremes: incremental A* has the minimum convergence ex-
ecution cost and stores no heuristic values, but its first-move

Algorithm Execution Planning Lag Heuristic Memory Suboptimality (%)
Incremental A* 158.3± 1.3 49.8± 1.1 2255.2± 28.0 0 0
LRTA*(d=1) 9808.5± 172.1 7.2± 0.0 8.2± 0.0 307.8± 5.1 0

LRTS(d=10,γ=0.5, T=0) 3067.4± 504.4 208.6± 1.4 1852.9± 6.9 24.6± 1.2 0.9± 0.02

PR-LRTS(d=5,γ =0.5,T=0) 831.9± 79.1 57.6± 0.3 548.5± 1.7 9.3± 0.4 1.0± 0.02

Koenig’s LRTA*(LSS=10) 2903.1± 51.5 70.9± 1.62 173.1± 0.3 424.5± 7.6 0
Koenig’s LRTA*(LSS=20) 2088.6± 39.3 130.1± 3.5 322.1± 0.6 440.2± 8.2 0
Koenig’s LRTA*(LSS=30) 1753.2± 32.4 188.6± 5.0 460.1± 1.1 448.8± 8.2 0
Koenig’s LRTA*(LSS=40) 1584.4± 31.5 250.8± 7.5 593.9± 1.6 460.4± 8.7 0

P-LRTA*(queueSize=9, updates=10) 1236.0± 21.5 40.3± 0.9 8.2± 0.0 339.0± 5.2 0
P-LRTA*(queueSize=19, updates=20) 708.2± 11.9 83.7± 1.8 8.3± 0.0 393.4± 5.8 0
P-LRTA*(queueSize=29, updates=30) 539.1± 8.8 129.7± 2.7 8.4± 0.0 444.7± 6.3 0
P-LRTA*(queueSize=39, updates=40) 462.4± 7.3 175.5± 3.6 8.3± 0.1 504.1± 7.2 0

Table 1:Results on 10,000 problems with visibility radius of 10. The results for Incremental A*, LRTA*, LRTS, and PR-LRTS are
taken from [Bulitko et al., 2005].

lag is the greatest of all algorithms because it plans all the
way to the goal. LRTA*(d=1) has the largest convergence ex-
ecution cost as a result of its simplistic update procedure, but
its first-move lag and planning costs are extremely low. For
each parameterization, P-LRTA* has a first-move lag compa-
rable to LRTA*(d=1), and its convergence execution cost is
even lower than algorithms that use sophisticated abstraction
routines, such as PR-LRTS.

Figure 4 shows the average convergence execution cost
of the algorithms on 1,000 problems of various lengths: P-
LRTA*’s convergence execution cost is comparable to in-
cremental A*’s. This indicates that heuristic learning in P-
LRTA* is efficient enough so that the expense of learning the
heuristic function is comparable to the expense of learning
thea priori unknown map itself.

0
10

20
30

40

0
10

20
30

40

0

2000

4000

6000

8000

10000

Queue Size
Maximum Number of Updates

Co
nv

er
ge

nc
e

Ex
ec

ut
io

n
Co

st

Figure 5:The impact of queue size and maximum number of
updates on convergence execution cost.

Using the same set of 10,000 problems used to generate
Table 1, we explore P-LRTA*’s parameter space. This exper-
iment reveals that the queue size and the maximum number
of updates per move exhibit some independence in how they

affect performance. That is, when we increase the maximum
number of updates with a fixed queue size, the convergence
execution cost decreases; the same happens when we increase
the queue size with a fixed maximum number of updates (Fig-
ure 5). This demonstrates that P-LRTA*’s parameters provide
two effective ways of changing the algorithm to meet specific
time and/or space requirements.

8 Future Work

Prioritized LRTA* is a simple, effective algorithm that invites
further analysis. In the future we will extend P-LRTA* to
include dynamic parameterization, as in some settings it may
be beneficial to use extra memory as it becomes available. P-
LRTA* provides a convenient way to take advantage of free
memory: the queue size can be dynamically adjusted.

P-LRTA* may benefit from a more sophisticated action-
selection scheme than the purely greedy decision-maknig
process we present. P-LRTA*’s simplicity makes it easy to
experiment with a number of recent real-time search tech-
niques that improve convergence time.

State abstraction has been successfully applied to real-time
heuristic search[Bulitko et al., 2005]. A hybrid approach that
combines prioritized updates with state abstraction is likely
to produce a search routine that is more powerful than either
method alone. Another interesting direction is to extend P-
LRTA* to handle dynamic environments in real-time by in-
cluding focused exploration and allowing heuristic values to
decrease.

9 Conclusions

Incremental search algorithms and real-time search algo-
rithms meet different requirements. Incremental search algo-
rithms such as A* have a short convergence process, but can
suffer from arbitrarily long delays before responding. Real-
time search works under a hard limit on the amount of compu-
tation per move, but its long on-line interactive learning pro-
cess reduces its applicability when good solutions are needed
from the start.

P-LRTA* has a response time on par with the fastest known
real-time search algorithms. At the same time, its learning
process converges in a time comparable to that of mere map

discovery in A*. P-LRTA* can learn twice as fast on the ac-
tual map as a state-of-the-art PR-LRTS learns on a smaller
abstract map.

As a step toward rapid-response algorithms that learn
quickly, we presented a real-time heuristic algorithm that
combines LRTA*’s aggressive initial heuristics and Priori-
tized Sweeping’s ranking of state updates. P-LRTA* does not
require the mapa priori making it well suited to virtual re-
ality trainers and computer games in which believable agents
can only see limited portions of the world.

Acknowledgments
We would like to thank Nathan Sturtevant for developing
HOG (Hierarchical Open Graph), the simulation framework
we used to generate our empirical results. We would also
like to thank Mitja Lŭstrek, David Thue, and several anony-
mous reviewers for their helpful comments. This work was
supported by NSERC and iCore of Canada.

References
[Bartoet al., 1995] Andrew Barto, Steven Bradtke, and

Satinder Singh. Learning to act using real-time dynamic
programming.Artificial Intelligence, 72(1):81–138, 1995.

[Bulitko and Lee, 2006] Vadim Bulitko and Greg Lee.
Learning in real time search: A unifying framework.Jour-
nal of Artificial Intelligence Research, 25:119 – 157, 2006.

[Bulitko et al., 2005] Vadim Bulitko, Nathan Sturtevant, and
Maryia Kazakevich. Speeding up learning in real-time
search via automatic state abstraction. InProceedings of
the National Conference on Artificial Intelligence (AAAI),
pages 1349 – 1354, Pittsburgh, Pennsylvania, 2005.

[Bulitko, 2004] Vadim Bulitko. Learning for adaptive real-
time search. Technical report, Computer Science Research
Repository (CoRR), 2004.

[Dini et al., 2006] Don M. Dini, Michael Van Lent, Paul Car-
penter, and Kumar Iyer. Building robust planning and
execution systems for virtual worlds. InProceedings of
the Artificial Intelligence and Interactive Digital Enter-
tainment conference (AIIDE), Marina del Rey, California,
2006.

[Hartet al., 1968] Peter E. Hart, Nils J. Nilsson, and Bertram
Raphael. A formal basis for the heuristic determination
of minimum cost paths.IEEE Transactions on Systems
Science and Cybernetics, 4(2):100–107, 1968.

[Herńandez and Meseguer, 2005a] Carlos Herńandez and
Pedro Meseguer. Improving convergence of LRTA*(k).
In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), Workshop on Planning and
Learning in A Priori Unknown or Dynamic Domains, Ed-
inburgh, UK, 2005.

[Herńandez and Meseguer, 2005b] Carlos Herńandez and
Pedro Meseguer. LRTA*(k). InProceedings of the 19th In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI), Edinburgh, UK, 2005.

[Koenig and Likhachev, 2002] Sven Koenig and Maxim
Likhachev. D* Lite. InProceedings of the National Con-
ference on Artificial Intelligence, pages 476–483, 2002.

[Koenig and Likhachev, 2006] Sven Koenig and Maxim
Likhachev. Real-time adaptive A*. InProceedings of the
International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS), 2006.

[Koenig and Simmons, 1998] Sven Koenig and Reid Sim-
mons. Solving robot navigation problems with initial pose
uncertainty using real-time heuristic search. InProceed-
ings of the International Conference on Artificial Intelli-
gence Planning Systems, pages 144 – 153, 1998.

[Koeniget al., 2003] Sven Koenig, Craig Tovey, and Yuri
Smirnov. Performance bounds for planning in unknown
terrain.Artificial Intelligence, 147:253–279, 2003.

[Koenig, 2001] Sven Koenig. Agent-centered search.Artifi-
cial Intelligence Magazine, 22(4):109–132, 2001.

[Koenig, 2004] Sven Koenig. A comparison of fast search
methods for real-time situated agents. InProceedings of
the Third International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pages 864 –
871, 2004.

[Korf, 1990] Richard Korf. Real-time heuristic search.Arti-
ficial Intelligence, 42(2-3):189–211, 1990.

[Moore and Atkeson, 1993] Andrew Moore and Chris Atke-
son. Prioritized sweeping: Reinforcement learning with
less data and less time.Machine Learning, 13:103–130,
1993.

[Shimbo and Ishida, 2003] Masashi Shimbo and Toru Ishida.
Controlling the learning process of real-time heuristic
search.Artificial Intelligence, 146(1):1–41, 2003.

[Shue and Zamani, 1993a] Li-Yen Shue and Reza Zamani.
An admissible heuristic search algorithm. InProceed-
ings of the 7th International Symposium on Methodologies
for Intelligent Systems (ISMIS-93), volume 689 ofLNAI,
pages 69–75. Springer Verlag, 1993.

[Shue and Zamani, 1993b] Li-Yen Shue and Reza Zamani.
A heuristic search algorithm with learning capability. In
ACME Transactions, pages 233–236, 1993.

[Shueet al., 2001] Li-Yen Shue, S.-T. Li, and Reza Zamani.
An intelligent heuristic algorithm for project scheduling
problems. InProceedings of the Thirty Second Annual
Meeting of the Decision Sciences Institute, San Francisco,
2001.

[Sigmundarson and Björnsson, 2006] Sverrir Sigmundarson
and Yngvi Bj̈ornsson. Value back-propagation vs back-
tracking in real-time heuristic search. InProceed-
ings of the National Conference on Artificial Intelligence
(AAAI), Workshop on Learning For Search, Boston, Mas-
sachusetts, 2006.

[Stentz, 1995] Anthony Stentz. The focussed D* algorithm
for real-time replanning. InProceedings of the Interna-
tional Joint Conference on Artificial Intelligence, pages
1652–1659, 1995.

