
Evolving Feature Selectors
to Inform Compiler Optimizations

CMPUT 680 Final Project Report

Chris Rayner
Dept. Computing Science

University of Alberta

Dec 11, 2009

Abstract Machine learning (ML) has the potential to help automate and
improve the design of static compiler heuristics. The core challenge in ap-
plying ML is representation: how do you accurately summarize a program
as a fixed-length feature vector? This experimental study is modeled after
Leather et al.’s 2009 work [4]. A framework is developed to automatically
evolve a collection of small programs (‘feature selectors’) that map arbitrary
program code to real-valued vectors. These features ultimately inform loop
unrolling decisions with the ambition of achieving faster compiled code.

The resulting prototype – a modification of GCC 4.3.1 – is slower at
compiling but occasionally makes beneficial unrolling decisions. Performance
may be held back by the limited dataset size and the simple classifier used.

1 Introduction

The goal of this project is to find feature selectors that map program infor-
mation to useful numbers. A feature selector is defined as a small program
based on a simple grammar. Program information is defined as a hierarchical
representation of a compiler’s static internal representation. Useful numbers
well inform the loop unrolling decisions of a particular compiler.

Loop unrolling duplicates the code inside a loop body, which decreases the
loop’s tripcount and associated control flow. In general, this transformation

1



can provide a compiler more freedom to perform scheduling, so can lead to
runtime speedups. There is the obvious risk of increased code size, which can
lead to instruction cache misses due to loop instructions spanning a wider
memory space. A more subtle problem is that poor register allocation by the
scheduler may increase register pressure [8]. Due to these competing factors,
deciding whether to unroll—and by how much—is a nontrivial process, but
remains a popular testbed for machine-learned compiler heuristics [4, 7].

Data from the MediaBench benchmark suite [5] is collected by examin-
ing GCC 4.3.1’s intermediate representation. This suite is freely available
and is a subset of those benchmarks used by Leather et al. [4], facilitating a
limited comparison. MediaBench also contains small, computationally man-
ageable benchmarks, allowing me to generate data in only a few days. A
brief description of the MediaBench suite and any modifications I made to
the individual applications is available in Appendix A.

2 Approach

This section describes the representation I use to represent hierarchical loop
information, the grammar used to define individual feature selectors, and a
short overview of the genetic algorithms framework used.

2.1 Representation

Natural loops are defined as an ergodic subgraph of the control flow graph
in which the loop header dominates all other nodes. By looking at the dom-
inator tree of this subgraph, a natural hierarchical representation emerges,
which is represented using the following syntax,

` =


[L,depth,numInsns, avgNumInsns, avgIterations,

[B, avgFrequency,oncePerIteration, [I, insnType], . . .

[I, insnType], [B, . . .]] . . .]].

Here a marker L marks the root node which contains static loop informa-
tion. B marks a node representing a basic block. And I indicates a node
representing an instruction. The variables are defined as follows:

• depth – the nesting depth of `, where 1 means no nest



• numInsns – a count of the instructions contained in the loop

• avgNumInsns – a static compiler-generated estimate of the average
number of instructions executed per loop iteration

• avgFrequency – a static compiler-generated estimate of the frequency
with which the corresponding basic block is executed

• oncePerIteration – a indicator as to whether the corresponding basic
block is executed once per iteration

• insnType – the instruction type in terms of the register transfer lan-
guage, which discerns between jumps, barriers, unary instructions, etc.

For example, the following loop has been extracted from the jpeg bench-
mark, which is described in Section A.

` =


[L, 2, 3, 6, 9, [B, 89, 1, [I, 9], [I, 10], [I, 5], [I, 5], [I, 6],

[B, 84, 1, [I, 9], [I, 10], [I, 5], [I, 6],

[B, 80, 1, [I, 10], [I, 5]]]]].

2.2 Feature Selectors

A feature selector is a small program S that that maps program information
to a real number, S : P → R. Feature selectors are defined using a small
language with a simple grammar (Figure 1). Definitions of the language’s
built-in functions are in Appendix B. The feature selector language is mod-
eled after that used by Leather et al. [4]1 and is specialized for analyzing
hierarchical data of the sort that represents natural loops.

Note that in Figure 1, ` is a hierarchical representation of program infor-
mation (in this case a loop) as extracted from the compiler’s intermediate
representation, and N ∈ [0, 1), M ∈ Z+. I motivate N’s unconventional
choice of domain by the need to have randomly generated feature selectors
more often evaluable on loops than not. For example, when a feature selector

1No specification of the original grammar used by Leather et al. was available, and the
implementations are slightly different. Those functions analogous to filters in Leather et
al.’s study support disjunction, and the instruction type categories have finer granularity.
Meanwhile, my grammar supports unions over sequences, and products over features.



feature : count (sequence) A feature expresses a value in R.
| attribute (node, N)
| sum (sequence, expr)
| average (feature, feature)
| product (feature, feature)
| max (feature, feature)

node : child (node, N) Nodes are tree nodes in `.
| `

sequence : select (sequence, filter) A sequence is a set of nodes.
| union (sequence, sequence)
| descendants (node)
| children (node)

filter : nodeType (·) = M A filter maps nodes to {0, 1}.
| attribute (·, N) = M
| attribute (·, N) > M
| attribute (·, N) < M

expr : nodeType(·) An expr maps nodes to R.
| attribute (·, N)
| 1 iff attribute (·, N) = M

Figure 1: An outline of the feature selection grammar. Nonterminals empha-
sized, numeric values in bold. ` is a hierarchical representation of program
information, N ∈ [0, 1), and M ∈ Z+. Function definitions in Appendix B.

refers to child(node,0.5), it is referring to the median child in the ordered list
of node’s children. But if a feature selector were to make reference to the
fifth node of a child, there would be many loops that this feature selector
would not be evaluable on. Some simple example feature selectors2 include:

S1(`) =

{
count

(descendants(`))
S2(`) =


count(select

(descendants(`),

type = B)).

Given the following example loop `, which was extracted from the compiler
during compilation of the jpeg MediaBench benchmark, we have:

2See Appendix D for examples of feature selectors in raw code.



` =


[L, 2, 3, 6, 9, [B, 89, 1, [I, 9], [I, 10], [I, 5], [I, 5], [I, 6],

[B, 84, 1, [I, 9], [I, 10], [I, 5], [I, 6],

[B, 80, 1, [I, 10], [I, 5]]]]]

⇒ S1(`) = 15, S2(`) = 3.

A feature selector is good if it generates numbers that help a machine
learning module (in this case, k-NN) to better discern the right optimization
decision. Unfortunately, the space of feature selectors is huge, and most
feature selectors are useless. The question of how we can automatically
create good feature selectors is examined in Section 2.3

2.3 Genetic Algorithms

How can feature selectors be automatically generated? Searching such a
space is generally challenging. It is like finding the highest peaks in a land-
scape of spikes with a narrow view of the terrain. Fortunately, it is for this
type of problem that stochastic optimization techniques are well suited. I
follow Leather et al. in the use of genetic algorithms [4], but simulated an-
nealing, particle swarm optimization, and other nonconventional stochastic
search algorithms [6] may be potential alternatives.

Within the genetic algorithm (GA) framework, fit candidates (feature se-
lectors) produce offspring (similar feature selectors) while unfit candidates
are removed from consideration. An algorithmic overview of such an ap-
proach is as follows:

• Initialize: Begin with a random pool of individuals

• Repeat until termination condition:

1. Measure each individual’s fitness

2. Delete unfit individuals

3. Refill the pool with fit individuals’ offspring

As a general summary, the GA procedure takes a random set (or pool) of
feature selectors and repeatedly (i) filters the set for its best candidates, and
(ii) introduces the best candidates’ offspring into the pool.



count

descendants

loop

select

type=B

count

loop

descendants

count

descendants

select

type=B

loop 1

child

count

descendants

loop

select

type=I

Figure 2: Examples of the mutation operator. The parent feature selector
on the left has a random nonterminal node selected. This nonterminal is
randomly re-expanded, which may lead to some of the results on the right.

Offspring: Offspring are created through mutation and crossover oper-
ations. Mutation re-expands a random nonterminal of an existing feature
selector. Crossover takes a random subtree from one feature selector and
replaces it with a random subtree of another feature selector. These two
operations are depicted in Figure 2 and Figure 3 respectively. The question
of which features to create offspring for is determined by fitness.

Fitness: To determine a feature selector’s fitness, I provide the numbers
it produces as an additional dimension of information to a machine learning
module. The subsequent effect in the model’s accuracy, when given a vali-
dation loop and told to classify its best unroll factor, is proportional to the
feature selector’s fitness. In my evaluation of feature fitness, I use a simple
machine learning module. Given a validation loop whose best unroll factor is
to be determined, k nearest neighbors (k-NN) [2] (with k=1) looks within its
training set for the nearest matching loop in the Euclidean distance between
feature vectors, and uses the optimal unroll factor of that loop as its answer.



count

child

select

type=B

count

descendants

loop

select

type=I

loop 1

descendants

count

child

select

type=I

loop 1

descendants

Figure 3: An example of the crossover operator. A subtree is randomly
selected from the first parent (left). This subtree replaces a randomly se-
lected subtree of the second parent (bottom). The only constraint is that
the subtrees have as roots the same type of nonterminal.

The use of k-NN is in contrast to Leather et al.’s use of C-4.5 decision tree.
I find k-NN to be an appropriate candidate for this study because it has no
training cost, making it ideally suited to the rapid evaluation of new feature
values demanded by the GA. I considered but discarded standard support
vector machines (SVMs) for use in this study. SVMs can have excellent
classification performance. However, they take significant time when used
to rapidly evaluate feature values, define only binary decision boundaries (so
must be used in conjunction to distinguish between multiple unroll factors),
and are frequently infeasible in the quadratic programming sense when the
feature selectors provide poor numbers (which is often).



3 Data Collection

1 2 3 4 5 6 7 8
Best measured unroll factors

0.00

0.05

0.10

0.15

0.20

0.25

0.30
N

u
m

b
e
r 

o
f 

in
st

a
n
ce

s
Best measured unroll factors: all

Figure 4: Proportion of best unroll factors across all benchmarks.

To learn good feature selectors, the system must know what good deci-
sions look like. But the space of all loop unroll factors on all loops, even on
small benchmarks, is immense. Following a sampling method from previous
work [4, 7] I build an oracle which consists of a set of trainable samples.
These are loops whose unroll factor, considered independent of other trans-
formations, makes a significant difference to the benchmark’s performance.

Specifically, in the oracle approach, individual loops are unrolled one
at a time. The best associated unroll factor is then stored in the oracle,
which is the eventual corpus of training data that is used to develop feature
selectors.3 The distribution of best unroll factors for the MediaBench suite
is shown in Figure 4.4 This figure reveals an expected trend: as the unroll
factor increases, fewer loops benefit. Informally, it appears as though it is

3Using the oracle as a training target may very well lead to machine-learned heuristics
that do not match the true goal of program speedup. That is, two transformations that
work well independently can actually be bad in tandem. But the space must be sampled,
and this approach may provide a good first pass.

4Distributions for individual benchmarks are shown in Appendix D.



benchmark best worst
adpcm 0.009 0.010

epic 0.099 0.101
ghostscript 0.274 0.282

gsm 0.054 0.058
jpeg 1.65 1.67

mesa 0.0600 0.0635
mpeg2 0.357 0.360

samples benchmark
6 adpcm

33 epic
66 ghostscript
28 gsm
96 jpeg
72 mesa
21 mpeg2

322 total

Figure 5: Left, best and worst average runtimes (in seconds of user time).
Right, final number of samples for each benchmark.

a good idea to unroll—but if one does not know how much to unroll, it is
safest to not unroll at all. Note the ‘lip’ on the distribution in the right of
Figure 4. I believe this may be because the rightmost bucket has captured
loops that would have benefited from an even greater unroll factor than 8.

Thresholding: An unroll factor is deemed better than all others if its
selection makes a significant difference (in terms of benchmark runtime) over
the other unroll factors for the same loop. Data is collected as follows:

1. For each of 10 innermost loops ` and each unroll factor n ∈ [1, 8]

(a) Recompile benchmark with ` unrolled n times

(b) t← average (5 runs) benchmark runtime

(c) Add 〈n, t〉` to temporary database

2. For each loop `, save the entry 〈nbest, tbest〉` if tbest is B% better than
tworst, i.e.,

tworst − tbest
tworst

≥ B

100

Note the parameter B used by this algorithm limits the trainable data to
only those loops whose unroll factor makes a percentage runtime difference of
greater than B%. Unfortunately, the choice of B creates a dilemma. Filtering
trainable instances for larger (more significant) runtime differences naturally



results in fewer trainable instances.5 To address this, I hand-selected the
largest value of B that I believed provided a reasonable number of trainable
samples to the oracle (close to 100 per benchmark if possible). The number
of trainable samples resulting from my selection of B, as well as the best
runtimes and worst runtimes for each benchmark, are tallied in Figure 5.

4 Experiments

This section describes experimental parameters, results on classification ac-
curacy and runtime performance changes, and ends with comment on the
novelty of the generated features.

4.1 Parameters

My results were developed on a dual-core Intel Pentium 4 with CPUs clocked
at 3.40GHz, running Linux kernel version 2.6.18-53.1.14.

Compilation was performed using GCC 4.3.1. This is the same compiler
used in Leather et al.’s study [4]. Each benchmark6 was compiled only with
the flag -O1, GCC’s first level of optimization. This optimization level per-
forms some relatively safe optimizations, some of which may have tangible
effects on loop unrolling. For instance, it takes constant expressions out of
loops, simplifies the branching conditions, and strength reduces some costly
operations in expressions. When known to be supported by the architecture,
some attempts are made to reschedule instructions after branches. Heuristics
based on static aspects of the control flow graph are used to predict branch-
ing probabilities. Attempts are made to transform conditional jumps into
equivalent code without control (using predicate registers when supported
by the architecture, e.g., IA-64). No instruction scheduling is done, which
may reduce potential gains from loop unrolling.

For each benchmark, one is designated as the target benchmark (i.e.,
its loops become our testing examples) and the rest are used to generate
training data for the genetic algorithm (i.e., their loops become our training
examples). The genetic algorithm itself evolves relatively small pools of size
25, and runs until at most four features are generated. A maximum of

5The interested reader can see plots of how the number of trainable instances tapers
off across the various benchmarks in Appendix D.

6Also see Appendix A for descriptions of and modifications to benchmarks.



adpcm
epic

ghostscript
gsm
jpeg

mesa
mpeg2

accuracy

2/6 (33.3%)
7/33 (21.2%)
11/66 (16.7%)
8/28 (28.6%)
15/96 (15.6%)
8/72 (11.1%)
3/21 (14.2%)

runtimes
learned no unroll GCC
0.0108 0.0100 0.0098
0.1024 0.1016 0.1093
0.2816 0.2818 0.2798
0.0578 0.0596 0.0552
1.699 1.668 1.609
0.0659 0.0631 0.0655
0.3807 0.3707 0.3480

Figure 6: Left, classifier accuracy on unroll factor selection, with best and
worst accuracies bold. Right, runtimes after compiling with the learned
heuristic, no unrolling, and GCC’s hardcoded heuristic. Runtime entries
bold when learned heuristic beats one of the two competing columns.

eight generations per epoch is allowed, or until five generations yield no
improvement.7 On each new epoch, 100 training examples and 100 validation
examples, taken randomly from all benchmarks except the target benchmark,
are supplied to the GA to determine feature fitness via k-NN, per Section 2.3.

4.2 Results

The left of Figure 6 depicts the classifier’s accuracy in terms of its ability
to predict the same unroll factor as contained in the oracle. In general
these results are only slightly better than choosing unroll factors uniformly at
random (which would be correct approximately 12.5% of the time). However,
even though the system is not able to determine the single best unroll factor
every time, perhaps it is still choosing beneficial unroll factors.

To investigate, I usurp GCC’s unroll heuristic and have my classifier
choose the unroll factor. It is important to note that, for each target bench-
mark, the classifier was never exposed to any loops in that benchmark. To
determine if my classifier has a beneficial effect I compare (i) my system,
(ii) GCC with no unrolling, and (iii) GCC with unrolling performed by the
expertly defined heuristics, and tally the results in Figure 6, right. These

7These numbers are significantly smaller than the numbers Leather et al. use in their
study. By contrast, Leather et al.’s pool sizes are 100; an arbitrary number of features gen-
erated; and a maximum of 200 generations per epoch are allowed as long as 15 consecutive
generations yield no improvement.



results provide evidence of the difficulty inherent in designing good loop un-
rolling heuristics. I have presented the results for three radically different
approaches to the problem of determining unroll factors (i.e., learning from
example data, not unrolling at all, and expert-designed thresholds). And
while GCC’s hard-coded heuristics generally seem to achieve better perfor-
mance, none of the three approaches is the clear winner.

A final caveat: in introducing the new heuristic I ran into a problem.
Loops with as many as 80 nodes were being unrolled 8 times, which across
hundreds of loops is so extreme as to make compilation intractable. To
mitigate this, I had to add an additional heuristic to restrict my classifier
from being activated only on the 10 innermost loops (since these were the
loops that training data was generated on), and for loops consisting of fewer
than 25 nodes in the control flow graph—otherwise the unroll factor is 1.

4.3 Novelty of Generated Features

In the study on which these experiments are based Leather et al. state
that, “the [feature selectors] are [not] obvious and are unlikely to be picked
by a compiler writer, demonstrating the strength of our approach” [4]. Is
this statement true of my own generated features? A principled answer to
this question can make use of a statistical comparison of the generated feature
values to static feature values that are available during GCC 4.3.1’s unrolling
decisions. These static features are all based on static analysis:

• the loop’s nesting depth

• a count of the instructions in the loop

• an expected number of iterations

• an expected number of instructions to be executed in one iteration

I define a vector of generated features f to be novel if any linear combination
of f is difficult to capture as any linear combination of these static features.

I use a technique called canonical correlation analysis (CCA) to determine
novelty: suppose an arbitrary linear combination of all generated feature
values is taken. Next an arbitrary linear combination of the aforementioned
static features is taken. The correlation ρ between the scalar results of these
operations measures linear dependence on one upon the other. CCA can be



benchmark correlation factors
ghostscript 1.0, 1.0, 1.0, 0.67

mesa 1.0, 1.0, 0.18, 0.15
gsm 1.0, 0.99, 0.72, 0.10

adpcm 1.0, 0.99, 0.70, 0.11
jpeg 1.0, 0.89, 0.41, 0.06

mpeg2 1.0, 0.85, 0.22, 0.05
epic 1.0, 0.99, 0.22

Table 1: Measures of correlation between generated features and static fea-
tures along orthogonal components of feature space. Maximum possible cor-
relation 1.0 indicates a linear combination of the generated features is exactly
proportional to some linear combination of the static features, demonstrating
a lack of novelty in the generated features.

used to extract the maximum such correlation possible over all such linear
combinations.8 De Bie et al. provide a good overview of CCA [1].

The results of performing CCA on the generated features against the
static figures is tallied in Table 1. Note the epic benchmark has only three
components with nonzero correlation. This is because the feature selectors for
the epic benchmark, despite being four-dimensional, only have three intrinsic
degrees of freedom (one dimension of the generated features, appropriately
scaled, is always equal to another dimension).9

As for the novelty, all benchmarks show at least two strong (nearly 1)
components of correlation. This means that at least two degrees of freedom
in the generated features are strongly correlated with two degrees of freedom
in the static features, suggesting to a lack of novelty. However, some bench-
marks (mpeg2, epic, jpeg, mesa) show low correlation in the remaining two
degrees of freedom, which lends weight to the statement that the features are
providing novel information to the classifier.

I stress that my feature selectors were created using prototypical frame-
work. As described in Section 5, my system likely has not explored the space
of feature generators as thoroughly as Leather et al.’s system.

8CCA also provides the particular coefficients corresponding to each linear operation,
but for brevity I do not report those numbers here.

9This points to a general weakness in the design of the system. Dimensionality reduc-
tion (e.g., principal components analysis) should be employed to filter out highly redundant
feature selectors.



5 Analysis and Conclusion

In the course of this project I encountered concepts and ideas that I believe
any new practitioner should be mindful of.

My results are not as good as Leather et al.. My GAs are more tamely
parametrized as described in Section 4.1, and I have significantly less training
data in each instance. But it is possibly my use of only one benchmark
suite that hurt me the most. The MediaBench suite appears specifically
designed so that each benchmark is different. This occurred to me after
looking at the distribution of loops across best unroll factors for different
benchmarks (these are shown in Appendix D). That is, any two benchmarks
in this suite were likely to have been selected so as to have little in common.
My application of ‘leave-one-benchmark-out’ cross-validation then may be
inherently flawed. Specifically, I may be developing feature selectors that are
good on benchmarks that are purposefully unalike to the target benchmark!

Developing the system naturally involved multiple debugging runs. Al-
though I do not report on it in detail, I noticed quite high variance in the
accuracy (as depicted in Figure 6) induced by the feature selectors. That
is to say, if I had taken more time to train, or re-run the system from the
beginning a few more times, or used larger feature selector pools, I may could
have generated significantly more accurate feature selectors.

Without explicitly being stopped after creating four features (as specified
in Section 4.1) there is the potential for the system to develop an arbitrarily
large number of feature selectors. But at some point, each additional feature
will simply serve to bias the model towards the current training set. Such
feature selectors lack generality and will generally be useless. How can we
detect or mitigate this? One answer lies in the many dimensionality reduction
techniques that I left unexplored, which I briefly make mention of in my
analysis of feature novelty in Section 4.3.

Whether the oracle approach to providing trainable samples helps or hurts
is conflated by my classifier’s relatively weak accuracy (Section 4.2). A simple
direction to explore unrolling each all loops on a given benchmark to the
amount specified by the oracle for that benchmark and to measure the effects.

The benchmarks take significantly longer to compile with augmented
GCC because of the communication overhead to interpreted Python code.
Python made prototyping a GA framework to evolve small programs easy,
but it was slow because it had to be invoked outside the compiler. It would
be much faster to integrate the learner directly into the compiler source.



6 Acknowledgments

Thanks: Ricardo Sanchez, even while under NDA and unable to look at
GCC 4.3.1 source code, provided me valuable advice on getting this beast
compiled. Paul Berube answered general questions and advised me on bench-
mark timing issues. Thanks also to the instructor, Nelson Amaral, and the
students of CMPUT 680, for the valuable classtime and conversations.

References

[1] Tijl De Bie, Nello Cristianini, and Roman Rosipal. Eigenproblems in
Pattern Recognition. Handbook of Geometric Computing: Applications in
Pattern Recognition, Computer Vision, Neuralcomputing, and Robotics,
August 2005.

[2] Belur V. Dasarathy (ed). Nearest Neighbor (NN) Norms: NN Pattern
Classification Techniques. 1991.

[3] GNU. The GNU Compiler Collection (GCC). http://gcc.gnu.org, 2009.

[4] Hugh Leather, Edwin Bonilla, and Michael O’Boyle. Automatic Feature
Generation for Machine Learning Based Optimizing Compilation. Code
Generation and Optimization (GCO), pages 81–91, 2009.

[5] Chunho Lee, M. Potkonjak, and W.H. Mangione-Smith. ”mediabench:
a tool for evaluating and synthesizing multimedia and communications
systems”. Microarchitecture, IEEE/ACM International Symposium on,
0:330, 1997.

[6] Shaul Markovitch and Dan Rosenstein. Feature Generation Using Gen-
eral Constructor Functions. Journal of Machine Learning, 49:1:59–98,
October 2002.

[7] Mark Stephenson and Saman Amarasinghe. Predicting Unroll Factors Us-
ing Supervised Classification. Code Generation and Optimization (CGO),
pages 123–134, March 2005.

[8] Peng Zhao and Jose Nelson Amaral. To Inline or Not to Inline? Enhanced
Inlining Decisions. Workshop on Languages and Compilers and Parallel
Computing (LCPC), October 2003.



A Benchmarks

This section describes the individual MediaBench benchmarks, and any mod-
ifications I made to code, input files, or timing procedures. Note that, since
these benchmarks are single-threaded, involve no device management, and
computationally bound (especially between the reading and writing of in-
put and output files), and since I anticipate loop unrolling affects only the
computational effort required of a given benchmark, I measured user time.

• adpcm – compresses/decompresses speech audio files. I average over
ten runs of compression and decompression.

• epic – compresses/decompresses grayscale images. I substituted the
small benchmark image (roughly 65kb) with a larger image (roughly
200k) and averaged over ten runs.

• ghostscript – converts between vector graphic files and uncompressed
images. I had to modify three trivial functions involving date and time.
Timings averaged over five runs of vector-to-bitmap conversion.

• gsm – compresses/decompresses audio files. Timings averaged over
encoding/decoding five times over.

• jpeg – performs jpeg encoding/decoding. I replaced the input file for
encoding with a 36 MB image file and the input file for decoding with
a 900k jpeg file. Timings were averaged over three runs of encoding
(raw ppm to jpeg) and decoding (jpeg to raw ppm).

• mesa – is a 3D graphics library packaged with three graphical demos.
Timings averaged over eight executions of each demo.

• mpeg2 – performs encoding/decoding of video files. Timings averaged
over three runs each of encoding and decoding.

These MediaBench applications were omitted for the following reasons:

• g721 – compresses/decompresses audio. Omitted for having only two
unrollable loops as determined by GCC 4.3.1.

• pegwit – encryption. Unable to compile.



• pgp – encryption. Compiled application does not read signature files,
possibly due to hardcoded endianness assumptions.

• sphere – unavailable in the downloadable MediaBench package.

• rasta – filters noise/distortion from audio samples. Unable to compile.

B Feature Selector Function Definitions

This section describes some of the predefined functions that are a part of the
feature selector language described in Section 2.2.

• count (s) returns a count of the size of sequence s.

• attribute (n,a) returns the attribute a of node n.

• sum (s,e) evaluates e on nodes in s and returns a sum.

• average (f ,g) returns the average of values f and g.

• product (f ,g) returns the product of values f and g.

• max (f ,g) returns the max of values f and g.

• child (n,f) if node n has a child f , return that child, else 0.

• select (s,f) returns nodes s for which the filter f returns 1.

• union (s,r) returns the union of sequences s and r.

• descendants (n) returns all descendants of node n.

• children (n) returns node n’s immediate descendants.

• nodeType (n) returns a value indicating node n’s type. This can be
one of loop, basic block, or instruction.



C Function Inlining

My original project proposal aimed to explore function inlining decisions,
rather than loop unrolling decisions. However, I encountered insurmountable
technical problems in overriding the GCC 4.3.1 inlining code.

In brief, neither dynamic memory allocation nor reading from a file ap-
pears to be safe, whether via stdio’s getline or fgets (these were necessary in
my framework to interface with Python). The problem persists even after
clean, bootstrapped compilations of GCC, and can be traced down to a single
line of code. Beyond this, all the code for data generation, feature selector
evolution, etc. are in place, since they are nearly identical to those used for
loop unrolling, so naturally I am disappointed.

Contrary to loops, the caller/callee relationship in the call graph is not
inherently hierarchical. However, my plan was to modify GCC to dump a
subtree of the callgraph of the following form,

S =

{
[S, times,numInsns,growthEstimate, inlinedStack,

[T,numInsns], . . . , [U,numInsns], . . .]

where a marker S indicates the root node which contains static information
about the call site, T marks a node representing a callee that is being consid-
ered for inlining, and U marks a node representing any callee of the calling
function that is not currently being considered for inlining.

Such a hierarchical representation is motivated by the fact that it enables
inlining information to be considered in the same way that Leather et al [4]
consider loops. Information about callees may provide some static indication
about how integral a particular function is to the execution of a particular
application. The following variables are defined:

• times – the number of calls from the caller to the callee that are being
considered for inlining

• numInsns – the number of instructions contained in a caller or callee

• growthEstimate – a static compiler-generated estimate of the growth
of the caller if inlining is performed

• inlinedStack – a static compiler-generated estimate of the amount of
the size of the inlined callee’s stack



Even without results I can speculate as to why this approach might fail
for function inlining. First, this approach is based on static analysis. Some
of the most helpful heuristics for function inlining make significant use of
dynamic profiling [8]. Second, the assumption of a hierarchical structure is
natural for loops, but strikes me as less so for call sites. The language upon
which feature selectors are based is specifically designed to handle hierarchical
structures. An alternative language not so much geared towards hierarchical
structure may provide a better basis for evolving feature selectors that help
inform inlining decisions. And, finally, whether to inline one call-site is a
very different decision than whether to inline two call sites—I would expect
this to be a significant consideration even moreso than it is for loops.

D Supplementary Data

Some raw code for feature selectors generated by the system include:

prod([nodeAttr([child([loopDump(), 0.4416]), 0.4986]),

nodeAttr([loopDump(), 0.3441])])

avg([nodeAttr([loopDump(), 0.6549]),

count([descendants([loopDump()])])])

nodeAttr([child([

child([loopDump(), 0.5829]), 0.1531]),

0.5990])

The remainder of this section provides plots on (i) the distribution of
best loop unroll factors across all benchmarks (depicted in Figure 7), and (ii)
how the number of trainable samples (loops in the oracle) drops off across
all benchmarks as I threshold at greater levels of discrepancy between worst
and best run times (depicted in Figure 8).



0.00 0.05 0.10 0.15 0.20 0.25 0.30
Difference between best and worst performances

0

1

2

3

4

5

6
N

u
m

b
e
r 

o
f 

tr
a
in

a
b
le

 s
a
m

p
le

s
Trainable samples: adpcm

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Difference between best and worst performances

0

5

10

15

20

25

30

35

40

45

N
u
m

b
e
r 

o
f 

tr
a
in

a
b
le

 s
a
m

p
le

s

Trainable samples: epic

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Difference between best and worst performances

0

100

200

300

400

500

600

700

N
u
m

b
e
r 

o
f 

tr
a
in

a
b
le

 s
a
m

p
le

s

Trainable samples: ghostscript

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Difference between best and worst performances

0

5

10

15

20

25

30

N
u
m

b
e
r 

o
f 

tr
a
in

a
b
le

 s
a
m

p
le

s

Trainable samples: gsm

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Difference between best and worst performances

0

20

40

60

80

100

120

140

160

180

N
u
m

b
e
r 

o
f 

tr
a
in

a
b
le

 s
a
m

p
le

s

Trainable samples: jpeg

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Difference between best and worst performances

0

50

100

150

200

250

300

350

400

N
u
m

b
e
r 

o
f 

tr
a
in

a
b
le

 s
a
m

p
le

s

Trainable samples: mesa

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Difference between best and worst performances

0

20

40

60

80

100

120

N
u
m

b
e
r 

o
f 

tr
a
in

a
b
le

 s
a
m

p
le

s

Trainable samples: mpeg2

Figure 7: Dropoff in trainable samples with an increasing threshold.



1.0 1.5 2.0 2.5 3.0
Best measured unroll factors

0.0

0.5

1.0

1.5

2.0
N

u
m

b
e
r 

o
f 

in
st

a
n
ce

s
Best measured unroll factors: adpcm

1 2 3 4 5 6 7 8
Best measured unroll factors

0.00

0.05

0.10

0.15

0.20

0.25

N
u
m

b
e
r 

o
f 

in
st

a
n
ce

s

Best measured unroll factors: epic

1 2 3 4 5 6 7 8
Best measured unroll factors

0.00

0.05

0.10

0.15

0.20

N
u
m

b
e
r 

o
f 

in
st

a
n
ce

s

Best measured unroll factors: ghostscript

1 2 3 4 5 6 7
Best measured unroll factors

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
u
m

b
e
r 

o
f 

in
st

a
n
ce

s

Best measured unroll factors: gsm

1 2 3 4 5 6 7 8
Best measured unroll factors

0.00

0.05

0.10

0.15

0.20

0.25

N
u
m

b
e
r 

o
f 

in
st

a
n
ce

s

Best measured unroll factors: jpeg

1 2 3 4 5 6 7 8
Best measured unroll factors

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

N
u
m

b
e
r 

o
f 

in
st

a
n
ce

s

Best measured unroll factors: mesa

1 2 3 4 5 6 7 8
Best measured unroll factors

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

N
u
m

b
e
r 

o
f 

in
st

a
n
ce

s

Best measured unroll factors: mpeg2

1 2 3 4 5 6 7 8
Best measured unroll factors

0.00

0.05

0.10

0.15

0.20

0.25

0.30

N
u
m

b
e
r 

o
f 

in
st

a
n
ce

s

Best measured unroll factors: all

Figure 8: Distribution across all benchmarks’ best unroll factors.


